
Composable Visual and Temporal Lens Effects
in a Scene Graph-based Visualization System

A Thesis

Presented to the

Graduate Faculty of the

University of Louisiana at Lafayette

In Partial Fulfillment of the

Requirements for the Degree

Master of Science

Jan-Phillip Tiesel

Spring 2009

c© Jan-Phillip Tiesel

2009

All Rights Reserved

Composable Visual and Temporal Lens Effects
in a Scene Graph-based Visualization System

Jan-Phillip Tiesel

APPROVED:

Christoph W. Borst, Chair Dirk Reiners
Assistant Professor of Computer Science Assistant Professor of Computer Science
Center for Advanced Computer Studies Center for Advanced Computer Studies

Anthony S. Maida Gary L. Kinsland
Associate Professor of Computer Science Professor of Geology
Center for Advanced Computer Studies

C. E. Palmer
Dean of the Graduate School

ACKNOWLEDGMENTS

I would like to express my gratitude to the following individuals who inspired and

supported my work and helped me in achieving my academic goals.

I would like to thank Dr. Christoph W. Borst for indispensable input, guidance,

and trust in my work; Christopher M. Best and Vijay B. Baiyya for laying the

groundwork for my research; Dr. Gary L. Kinsland for two years of fruitful and

interesting collaboration as well as insight into the science of geology; Dr. Dirk Reiners

for constructive feedback and for serving as a committee member; Dr. Anthony S.

Maida for productive collaboration and the willingness to serve as a member of my

thesis committee; and Dr. Emad Habib for insight on hydrologic models and for

providing time-varying simulation data to our laboratory. Also, I would like to thank

all students of the Virtual Reality Laboratory at CACS for exchange of ideas and a

great learning experience.

My special appreciation goes out to my fiancée Melissa K. Berz, my parents Karin

and Horst Tiesel, and my wonderful family of friends for never letting me forget that

home truly is where your heart is.

Last but not least, my praise goes out to the one “from whom and through whom

and to whom all things are.”

Contents

List of Tables . vii

List of Figures . viii

Introduction and Related Work . 1

Introduction . 1

Overview . 3

Motivation . 4

Related Work . 5

The Magic Lens Metaphor . 5

3D Magic Lenses . 6

Flat versus Volumetric Lenses . 7

Rendering of Lens Effects . 8

Interpreting Volumetric Data using Volumetric Lenses 10

Rendering of Composable Volumetric Lenses 11

Lenses as Foci in Virtual Environments . 14

Scene Graph Architecture for Real-time Rendering Systems 16

Motivation . 16

Definition . 17

Graph Traversal . 18

Graphics System Interface . 19

OpenSceneGraph . 20

Geometry and State Sets . 21

Single-Pass Rendering and Advanced Composition of Volumetric Lenses 22

Motivation . 22

Application Design . 25

Volumetric Lens Rendering . 26

Lens-scene Intersection . 27

Lens Frame Transformation and Clipping 31

Single-pass Lens Rendering Technique . 35

Note on Terminology: Single-pass versus Multi-pass 35

Motivation . 37

Supported Lens Effect Categories . 38

Comparison of Required Render Passes . 40

Lens Composition and Clipping using Region Bitmasks 42

Order-based Lens Clipping . 45

Shader Composition Framework . 48

Lens Effect Definition . 49

Variable Naming Convention . 50

Resolving Naming Conflicts . 52

Shade Trees . 53

Using Shade Trees for Lens Effect Composition 54

Results . 56

Lens-scene Intersection using k -d Trees . 56

Performance Evaluation of Single-pass Rendering Technique 58

Performance Comparison to Rendering Approach of Best & Borst . . 66

High-level Comparison . 70

Limitations and Scalability . 72

Lens Effect Composition . 74

Exchange of Techniques between Rendering Approaches 76

Scene Graph Integration . 78

Extending Volumetric Lenses to Spatiotemporal Visualization Tools 80

Motivation and Applications . 80

Time Navigation Techniques . 81

Spatiotemporal Lens Tools . 83

Spatiotemporal Lenses in Virtual Environments 87

Design and Implementation . 88

Absolute and Relative Time Offset . 88

Interface Design . 89

Lens Composition . 91

Rendering . 95

Results . 99

Conclusion and Closing Remarks . 100

Conclusion . 100

Closing Remarks . 102

Bibliography . 104

Abstract . 108

Biographical Sketch . 110

vi

List of Tables

Table 3.1. Comparison of lens effect categories supported by different rendering ap-

proaches. The distinction between the two single-pass methods is described

in Section 3.4.5. (*Limited clipping capabilities; see Section 3.4.6.) 40

Table 3.2. Constant configuration used for all performance tests presented in this

work. 56

Table 3.3. Performance results for lens-scene intersection comparing rendering up-

date rates for different intersection strategies. The update rate is given in

frames per second. 57

Table 3.4. Performance results for single-pass lens rendering (using Method II). . . 62

Table 3.5. Performance results for multi-pass lens rendering. 62

List of Figures

Figure 1.1. The two illustrations contrast the validity of lens focus regions for a) flat

lenses and b) a volumetric lens in a three-dimensional environment shared

by multiple users. 8

Figure 2.1. Example of a scene graph structure and a corresponding graphical

rendering of the contained objects. Although both bunny objects share the

same geometric data, their appearance differs due to the different render

state sets connected to their parent nodes. As can be seen from the graph

structure, the ball and one of the bunnies share identical render state sets.

Each of the three objects is positioned in space using its parent transform

node. 18

Figure 3.1. Simplified overview of our application framework showing the interaction

between CPU and GPU computation. 26

Figure 3.2. The left-hand side shows a polytope bounding volume defined by four

planes projected into 2D space. Normals of polytope planes are defined to

point towards the inside of the represented volume. The right-hand side

shows how a polytope may be used to represent the intersection volume

of two overlapping polytopes. By creating a union of the original sets of

planes (R1 and R2), an intersection volume is defined by the set of planes

denoted as R3. 28

Figure 3.3. Illustration of all 28 possible line segments extracted from the cubic

polytope’s corner vertices. Different colors used for illustrative purposes

only. 29

Figure 3.4. Overview of coordinate systems relevant for rendering of volumetric lens

effects. 32

Figure 3.5. Complete effect definition for the lens space transform performed for

each lens in the scene. The premultiplied vertex expressed in the eye

coordinate system is transformed into the local coordinate system of the

lens. By the declaring the variable to be of type varying, automatic

hardware interpolation of its value across rendered fragments is applied. . 33

Figure 3.6. Sample effect definition for a region test of a spherical lens performed

in the lens coordinate system. 34

Figure 3.7. Two lens examples using different in-out tests to define their shape.

Whereas the lens applying the red fabric effect has a spherical shape, a 2D

texture is used for the marble effect lens to create an extruded “fleur-de-lis”

volume. 35

Figure 3.8. The left-hand side of the illustration compares the number of geometry

render passes required to draw a scene containing a single piece of geometry

(bunny) that is intersected by three volumetric lenses applying fragment-

level effects. The lenses intersect each other and create a total number of

eight distinct regions (including the region outside of all lens volumes). a)

shows the (sub) scene graph created using a multi-pass rendering technique,

while b) shows the scene graph created using our technique. The multi-

pass approach requires eight different GPU programs and invokes eight

draw calls of the bunny geometry. We achieve the same visual result using

a single GPU program and only one geometry pass. Similarly, c) gives an

example of how rendering of lenses intersecting multiple objects requires

one GPU program and one draw call per object. 41

Figure 3.9. Schematic view of lens (intersection) regions and their respective region

bitmasks (left). The region bitmask is established depending on the frag-

ment’s position with respect to the lenses in the scene. A fragment that is

outside of all lens volumes results in a mask of 000. Lens order is A-B-C,

with A being the lens effect that is applied last. Desired clipping behavior

for varying lens content (depicted by the different fill colors used for the

lenses) is exemplified on the right. 42

Figure 3.10. Pseudocode (abbreviated) of fragment shader program used to render

a scene containing three lenses (Method I). 43

Figure 3.11. Pseudocode of fragment shader program used to render a scene con-

taining three lenses (Method II). 45

Figure 3.12. Example scene showing order-based clipping of lens content rendered

using Method I. The currently selected lens is shown with a green outline.

Note how the clipping of individual lenses changes as the user successively

selects lenses that show different content. 47

ix

Figure 3.13. The renderings illustrate the limited abilities to implement proper

clipping of intersecting lenses with different content graphs using Method

II. The left-hand image shows the clipping result if fragments in intersection

regions are discarded, while the image on the right shows the “merged”

result that is generated if those fragments are not discarded. 48

Figure 3.14. Definition of simple color lens effect including meta information, the

declaration of shader parameters and attributes, and the GLSL fragment

shader code executed on the graphics processing unit. 51

Figure 3.15. Examples of lens signatures for three lenses applying different effects

are shown in a), while a respective shade tree generated by our system for

the lens intersection region accentuated in gray is illustrated in b). 55

Figure 3.16. Example rendering of scene used for performance evaluation. Shown

here is Scene 1 containing three cubic color map lenses. Elevation data

is property of the Shuttle Radar Topography Mission (SRTM), which is

headed by the National Geospatial-Intelligence Agency (NGA) and the

National Aeronautics and Space Administration (NASA). 59

Figure 3.17. Performance plots comparing single-pass and multi-pass rendering

approach. 63

Figure 3.18. Example rendering of scene used for performance evaluation of the

rendering approach of Best & Borst. Shown here is the fixed view of the

scene containing three cubic color map lenses. Elevation data is property

of the Shuttle Radar Topography Mission. 67

Figure 3.19. Performance plots comparing our single-pass technique and multi-pass

rendering approach of Best & Borst in terms of added cost per additional

lens in the scene (a). Higher numbers of lenses are not supported by the

multi-pass implementation used by the author. Plot b) compares results

in terms of added cost per lens intersection region in the scene. A total

number of four lenses was used for all intersection cases. Note that in a),

plots for the single-pass results overlap for most values shown. 68

x

Figure 3.20. Performance plots comparing our single-pass technique and multi-pass

rendering approach of Best & Borst in terms of render update rate. Note

that different datasets and system implementations were used. Therefore,

a direct comparison of absolute frame rates is not meaningful, whereas

relevant performance trends may still be observed. While a) shows the

impact of additional non-intersecting lenses on the render performance, b)

compares results in terms of performance drop per additional lens inter-

section region in the scene. A total number of four lenses was used for all

intersection cases. Note that in a), plots for the single-pass results overlap

for most values shown. 69

Figure 3.21. Example case for which lens-geometry intersection has to be determined

by a fallback method. Shown in red is the axis-aligned bounding box

of the geometry, the green outline shows the extent of the lens volume.

For this case, the bounding box test indicates a potential for intersection,

while the line segment/k -d tree intersection test may not detect an actual

intersection. Therefore, a fallback method has to be used for intersection

that ultimately determines the result of the intersection test. 74

Figure 3.22. Example of lens effect composition using marble and fabric shader

effect. Note how the specular highlights of the marble as well as the high-

lights of the red fabric at glancing angles are preserved in the lens inter-

section region. Dragon model is property of Stanford Computer Graphics

Laboratory. 75

Figure 4.1. Example application for composition of spatiotemporal lenses (con-

structed). By combining absolute time referencing with a relative time

offset, a user can study changes in the visualized population density data

between 1950 and 1951 as well as between 1980 and 1981 in different parts

of the world by simply moving the respective lenses. Images are property

of NASA–Visible Earth Project. 84

Figure 4.2. The left image shows a typical use of the ghosting effect in modern

3D animation systems. The right image gives an example of using an

aggregating spatiotemporal lens to achieve the same effect in a user-defined

region of interest without affecting the rest of the scene (constructed).

Image generated using Generi character rig by Silke (2009). 87

xi

Figure 4.3. Conceptual user interface for spatiotemporal lenses using either absolute

or relative time offset to be applied to intersected objects. Different time

formats may be used depending on the domain of the visualization and the

temporal granularity of the observed data. 90

Figure 4.4. Conceptual user interface for different spatiotemporal lenses. The lens

labeled “1980” applies an absolute time to the rendered population data

(Rabs < 1980 >). As it is intersected with a lens applying a relative time

offset (Rrel < 10 >), the intersection region Rabs < 1990 > is created. The

lens in the bottom left shows a special case of absolute time: instead of

a single fixed time instant, it uses a time range and continuously updates

its time to create a looped animation of the population data between the

years 1940 and 2000. 91

Figure 4.5. Example scene illustrating the need for handling time warping as object-

level effect. On the left, a time composition of a scene containing a single

animated sphere is shown. While the solid rendering of the sphere depicts

its position at time t = 3, the non-opaque spheres show its position at

previous and successive time steps. On the right, a conceptual rendering

of the same scene at time instant t = 3 is shown. In addition, the scene now

contains a spatiotemporal lens that renders the scene at time t = 3+2 = 5

inside its boundaries. As the sphere has moved and parts of it are visible

inside and outside of the lens volume, its visual representations have to be

treated as two distinct scene objects (compare Section 3.4.1). The depicted

lens effect therefore has to be categorized as object-level effect. 96

Figure 4.6. Region subdivision algorithm used to identify all non-congruent, non-

overlapping regions from a list of lens volumes. 97

Figure 4.7. Algorithm for rendering of a scene graph structure containing spatiotem-

poral lenses. 98

xii

PRELIMINARY NOTE

Mathematical notation

Lower-case bold letters, such as v, are used throughout the text to denote vectors,

while upper-case bold letters, for example T, represent matrices. Vectors are considered

to be column vectors, using the superscript T on a vector denotes the corresponding

row vector vT . Where applicable, the use of homogeneous coordinates is assumed.

Consequently, a vector with a homogeneous coordinate of zero (e.g., [1 2 3 0]T)

represents a direction, while vectors with a homogeneous coordinate of one (e.g.,

[1 2 3 1]T) denote positions.

When describing transformations between coordinate systems, the notation eye
lensT

is used for a matrix that transforms vectors or points from the lens coordinate system

to the eye coordinate system. When expressed in words, this transform is referred to

as lens w.r.t. eye (lens with respect to eye). Likewise, lensv refers to a vector whose

coordinates are expressed w.r.t. a coordinate system called lens. This follows the

notation used by Craig (1989).

Chapter 1

Introduction and Related Work

1.1 Introduction

This work describes the author’s research on extending the established concept of

volumetric lenses as interactive tools in real-time computer graphics applications. The

lens metaphor was introduced to the computer graphics community in 1993 by Bier

et al. under the name of Magic Lenses
TM∗. Their Magic Lenses were integrated into

a 2D graphics system and offered to the user an alternative view within a spatially

bounded region of interest (focus) while maintaining an overview of the surrounding

features (context).

In the past two decades, both the academic field of computer graphics and

the related industry have seen enormous growth and maturing. The domain of

suitable interactive applications for tools like the Magic Lenses now includes medical

imaging, geological interpretation, architectural visualization, virtual reality, and many

others. Advances in semiconductor technology and computer science have led to the

propagation of real-time 3D graphics applications from highly specialized workstations

to a variety of devices capable of creating synthesized 3D imagery at interactive frame

rates (ranging from inexpensive handheld computers to multimillion-dollar immersive

virtual reality venues).

A comparison of the computing time necessary for integrating Magic Lens-like tools

into a graphical application exemplifies the enormous performance boost made possible

∗Magic Lens is a trademark of the Xerox Corporation

by dedicated graphics hardware and efficient computer graphics algorithms. Whereas

a screen update for the 2D application of Bier et al. took about 300 ms for a scene

containing a single lens, we show in Chapter 3 how modern graphics hardware can

be used to render a high-resolution image of a complex 3D scene containing multiple

overlapping volumetric lenses in less than 10 ms.

The concept of Magic Lenses has been adapted and extended by several researchers,

and various publications describe applications and techniques related to the interactive

tool. Section 1.4 provides an overview of the relevant work. However, several aspects

of the powerful concept are not fully explored in previous research. Among others,

these aspects include the efficient composition of complex surface shading effects

using multiple lenses or the introduction of spatiotemporal lenses that can be used

to examine time-varying data. This thesis investigates the mentioned prospects and

extends previously published research by Best & Borst (2008).

The contributions of the author’s work as described in this text are:

• Detailed description of integrating efficient rendering techniques for volumetric

lenses into a scene graph-based visualization system;

• Introduction of shade tree concepts for composition of lens effects;

• Introduction of single-pass rendering technique for composable volumetric lenses;

• Quantitative evaluation of the presented rendering technique; and

• Introduction of spatiotemporal lenses as tools for interpretation of space-time

features in time-varying geometric datasets.

2

1.2 Overview

In the remainder of this chapter, we state the main motivations behind the

continued research on volumetric lenses and summarize previously published work on

the topic.

Chapter 2 highlights advantages of using a scene graph-based architecture for

complex visualization systems. It also provides an introduction to the underlying

concepts and data structures of such an architecture as they are used frequently

throughout the following chapters.

Chapter 3 is concerned with an efficient integration of composable volumetric

lenses into a scene graph application. We present an implementation of volumetric

lens rendering using dynamically-generated GPU programs and show how it can be

extended to support composition of complex shading effects. We introduce a novel

single-pass rendering technique and give qualitative and quantitative results of our

approach.

We introduce the concept of spatiotemporal lenses in Chapter 4. After describing

possible scenarios for their application, we propose a flexible software design for

integrating this type of tool into a scene graph-based rendering system.

A high-level conclusion of the presented work and the obtained results can be found

in Chapter 5. Finally, suggestions for future research are presented.

3

1.3 Motivation

Over the past years, many academic and commercial fields have seen strong progress

in the resolution and availability of sophisticated imaging techniques. The sampling

domain for these techniques now ranges from human brain tissue to the topology of

the earth’s surface. Geometric data of high complexity are readily available and can

be visualized using a variety of graphics algorithms and dedicated graphics processing

hardware. This development is accompanied by a growing demand for interactive tools

that help users to find correlations in the massive amounts of data, develop hypotheses

using the generated imagery, or adjust its parameters to create a desired appearance.

Volumetric lenses represent a class of interactive tools that allows users to apply the

perceptual concept of focus and context to a virtual environment. These tools enable

users to establish multiple views of the same data (using different levels of complexity

or deviating modes of visual presentation). They also allow for interleaving of different

data without impacting the perception of overall context.

Past research disputed the existence of a concept for semantically useful 3D

lens compositions (Viega et al., 1996) and some performance results raised concerns

about the ability to provide such features in an interactive real-time rendering system

(Ropinski & Hinrichs, 2004). In this work, we show how modern graphics hardware

can be programmed to render semantically meaningful and intuitive lens compositions

at interactive frame rates. We introduce a model for efficient composition of complex

surface shading effects and suggest techniques to extend the applicability of volumetric

lenses to the spatiotemporal domain.

4

1.4 Related Work

1.4.1 The Magic Lens Metaphor

Bier et al. (1993) introduced the Magic Lens metaphor in their classic paper in

1993. Their work described the use of dynamic user interface elements that modify

the presentation of objects within a graphical application in two dimensions. The user

specifies the objects to be affected by positioning a 2D outline (typically a circle or

rectangle) on top of them. The outline of the tool represents the scope of the visual

effect that is imposed on subjacent objects. The action of moving the tool across

multiple objects and simultaneously observing the established effect resembles the

familiar use of a magnifying glass, which gave rise to the name that Bier et al. coined

for this type of tool: Magic Lenses.

The lenses could be used to either enhance the data (e.g., by revealing previously

hidden information) or to reduce its complexity (e.g., by suppressing irrelevant or

distracting information). In addition, it was also possible to alter only the visual

presentation of graphical objects. Among other applications, Bier et al. suggested

this type of effect for the dynamic preview of a graphical design as it would appear in

different output media (e.g., a black & white printer).

Besides introducing the tool metaphor, the work of Bier et al. also identified several

challenges in adapting the concept for more advanced rendering systems. These are

• composition of multiple lenses;

• significance of lens order for the composite effect;

• ability to parameterize the underlying renderer for correct lens clipping; and

5

• impact of lens rendering on the performance of the rendering system.

As we highlight in subsequent chapters, the significance of these challenges persists

or even increases when the the Magic Lens concept is translated to the three-dimensional

domain.

1.4.2 3D Magic Lenses

A few years after the initial concept of the Magic Lenses as a tool for interactive

2D applications was established, researchers started investigating the potential of

introducing the metaphor to graphics applications that render three-dimensional

scenes. Viega et al. (1996) were the first to translate the idea of Magic Lenses to

interactive 3D applications. They described two classes of 3D interface tools that could

be derived from the original concept: flat lenses and volumetric lenses.

In their work, Viega et al. stated that when composition of lenses is allowed, the

complexity of the geometrical computation increases due to the large possible number

of intersection regions and their respective boundaries. The authors also doubted

that composition of volumetric lenses could offer meaningful semantics. We show in

Chapter 3 how the composition of volumetric lenses with complex shapes and a variety

of shading effects can be achieved in a single render pass and without the necessity of

maintaining complex boundary descriptions for individual lenses and their intersection

regions.

Besides giving a first algorithm used for rendering of volumetric lenses (which

employed clipping planes for separation of lens interior and exterior), the work of Viega

6

et al. suggested several interesting directions for future work:

• using volumetric lenses as transportation portals inside virtual environments;

• applying actions to enclosed objects that go beyond altering their visual

presentation (“behavior lenses”); and

• using 3D lenses as “crystal balls” that alter the time-based state of objects.

To the author’s knowledge, none of the proposed concepts has since been investigated

in published work for the case of three-dimensional lens shapes. Itoh et al. (2006)

proposed the concept of a volumetric WorldBottle that lets users view and interact

with remote spaces; in addition, their tool can be used as portal to the target space.

However, the WorldBottle metaphor differs substantially from volumetric lenses as it

does not allow the application of lens-specific effects to objects in the context space.

This work introduces the concept of spatiotemporal lenses in Chapter 4 and explores the

implementation and applicability of this enhanced form of the Magic Lens metaphor.

1.4.3 Flat versus Volumetric Lenses

Fuhrmann & Gröller (1998) used the term Magic Boxes for a three-dimensional

counterpart to the lenses of Bier et al. and differentiated them from the notion of a

simple adaption of the “flat” Magic Lens, which they describe as a planar polygon with

arbitrary boundary shape. This corresponds to the distinction made by Viega et al.

Both the user’s current viewpoint and the pose of the lens were needed to determine

the focus region of a flat lens and to render respective effects.

The fact that the focus of a flat Magic Lens depends on a user’s viewpoint limits its

7

a)

b)

Figure 1.1: The two illustrations contrast the validity of lens focus regions for a) flat
lenses and b) a volumetric lens in a three-dimensional environment shared by multiple
users.

usefulness in a shared virtual environment to a single user. In addition, the lens has to

be moved by the user if the viewpoint is changed in order to maintain regional focus.

Explicitly defining a volumetric interest region overcomes the dependency on the

current viewpoint of a single user. This makes the concept suitable for collaborative

virtual environments, where a common focus region can be used by multiple users

independent of the viewpoint of each individual collaborator. Figure 1.1 depicts

the difference between flat and volumetric lenses in the context of a collaborative

environment or changing viewpoint of a single user.

1.4.4 Rendering of Lens Effects

The flat lenses of Fuhrmann & Gröller were rendered using a screen-space technique

that relies on the stencil buffer, while the Magic Boxes required additional clipping

8

planes for correct rendering. Whereas their rendering technique required only a single

geometry render pass (in contrast to the six rendering passes needed by Viega et al.),

its applicability is very limited. This is mainly due to the fact that context geometry

positioned behind the lens is not rendered at all. This behavior exhibits a strong

violation of the original concept and one of its major benefits: providing an alternative

presentation of the user’s focus while maintaining the surrounding context.

Another major limitation of the rendering techniques of both Viega et al. and

Fuhrmann & Gröller comes with their dependence on hardware clipping planes. While

the clipping plane approach can be efficiently implemented on graphics processing

hardware, it is limited in terms of the shape complexity of the employed lenses as well

as the maximum number of lenses that can be rendered at the same time. For example,

six clipping planes are required to render a single cubic lens; to approximate a spherical

lens shape, a much higher number of clipping planes is necessary for a single lens.

The maximum number of supported clipping planes depends on the utilized graphics

hardware; the OpenGL specification merely assures the availability of six clipping

planes.

Ropinski & Hinrichs (2004) presented a multi-pass rendering approach for volumetric

lenses that requires a dual depth buffer–a data structure not currently directly available

in graphics processing hardware. Their algorithm is inspired by the depth peeling

technique, which is commonly used in real-time rendering systems to achieve order-

independent transparency effects. Ropinski & Hinrichs noted the benefits of integrating

lens rendering into a scene graph system for a reduction in the amount of data that

9

has to be processed per rendering pass. We describe in Chapters 2 and 3 how a scene

graph system can be used to efficiently render composable lens effects.

Context-sensitive lenses for scene graph systems were introduced by Mendez et al.

(2006). Their work mentioned information filtering as a potential application for

volumetric lenses and notes that opposite behavior may be applied, as well, in the

form of information enrichment (more complex rendering style, presenting additional

geometry, etc.). Mendez et al. introduced a variant of the depth peeling algorithm

presented by Ropinski & Hinrichs using fragment shader programs. Their technique

allowed for rendering of composable volumetric lenses.

1.4.5 Interpreting Volumetric Data using Volumetric Lenses

Although most 3D lens techniques focus on real-time visualization of discrete

geometric surfaces, some interesting approaches to applying volumetric lenses effects

to volumetric data were presented in the past.

The work of Wang et al. (2005) takes an optical physics approach to rendering

of lens effects applied to dense volumetric datasets. The authors implemented a

ray casting rendering algorithm running in real-time on the graphics processing unit

(GPU). Although the presented visual results are promising, their technique barely

achieves interactive frame rates and is not applicable to scanline rendering techniques

using the standard graphics pipeline.

Plate et al. (2007) also investigated how lenses can be used in the interpretation

of volumetric datasets. Their approach allows for real-time rendering of convex

10

polyhedral lenses that apply various effects to the presented volumetric data. Lenses

may be overlapped and the semantics of composite lens effects can be expressed using

an interactive shader composer. The shader composer enables the user to establish

connections and operations between input attributes (coming from the volumetric

source data) that ultimately result in a single output color. Whereas the presented

operations are closely related to the volumetric data being rendered, the general idea of

representing the combination of multiple lens effects using a tree structure of attribute

and operator nodes seems to offer an intuitive approach to the problem. We describe

in Chapter 3 how we adopted the concept of shade trees as underlying conceptual data

structure for lens effect composition.

1.4.6 Rendering of Composable Volumetric Lenses

Earlier work by Borst et al. (2007) on volumetric windows (an analog of the 2D

windows metaphor) revealed a new approach for determining interior and exterior

lens geometry during rendering. The authors introduced simple per-fragment tests to

distinguish between regions affected by lens volumes (focus) versus geometry outside

of any lenses (context). In this context the term fragment is considered to be an

individually shaded (sub)pixel of the synthesized image. Borst et al. showed that

expressing the three-dimensional position of a single fragment with respect to the

local coordinate system of a volumetric lens makes the formulation of in-out tests for

different lens boundaries very concise and intuitive. The nature of the in-out test then

determines the shape of the volumetric lens.

11

Although Borst et al. presented interesting ideas on expanding the notion of 3D

windows, the computer graphics community has not seized the suggestion of further

exploration of its potential for Virtual Reality applications.

Best & Borst (2008) presented a solution for rendering composable volumetric

lenses based on the per-fragment in-out tests mentioned earlier, which allow for precise

clipping of interior and exterior lens geometry. Their rendering technique requires

a specialized shader program for each unique region that implements the composite

shader effect for enclosed geometry and clips away outlying fragments. Best & Borst

define the set of regions to be the volumes defined by lenses and their intersections.

Using this approach, the number of potential render passes grows exponentially with

the number of lenses (2n for n lenses). In order to minimize computational cost, Best &

Borst added a Region Analyzer module to their implementation. The Region Analyzer

employs CSG (Constructive Solid Geometry) techniques to identify the minimum

number of regions that need to be considered for obtaining a correct visual result.

Whereas this approach guarantees correct results and improves overall performance, it

causes computational overhead (and a decrease in rendering update rate) whenever the

user interacts with the scene. Moving a lens, for example, may require a full update

of the Region Analyzer, unless partial updates are supported by the Region Analyzer

module. The computational cost then depends on the total number of lenses and the

complexity of their CSG boundary representation.

We show in Chapter 3 how the rendering technique of Best & Borst can be efficiently

integrated into a scene graph rendering system. In addition, we present a new rendering

12

technique that is capable of creating composite object-level and fragment-level lens

effects in a single geometry pass. For the case of fragment-only effects, this geometry

pass consists of a single render pass using a single object. For object-level effects,

multiple objects need to be drawn using single-pass rendering for each respective

object. It should be noted that for the special case of different object-level effects

for every lens intersection region, both approaches require the same amount of GPU

programs and render passes.

The work of Best & Borst described simple composition of lens effects based on

per-lens blending options (e.g., replace, add, subtract). In order to achieve effect

composition, subsequent calls to individual effect implementations were made to alter

the value of the fragment color. For some blending behaviors (e.g., add and subtract),

the previous color value was taken into account to compute the updated value.

However, the expressiveness of this approach is limited when dynamic composition of

complex shading effects is desired. One such example is the effect composition of a lens

that modifies surface material attributes with a lens adding specular light reflectance.

Our work proposes the use of shade tree concepts to allow for more tractability in the

composition of lens effects.

Another interesting rendering technique for volumetric lenses defined by complex

free-form shapes was presented by Trapp et al. (2008). In order to generate complex

focus regions on virtual city models, the authors converted 3D geometric models

to Volumetric Depth Sprites to define complex lens shapes. During rendering, the

membership of a single fragment to a (composite) lens region is established using

13

in-out tests similar to those described by Best & Borst. In contrast to using implicit

equations, Trapp et al. use layered 2D texture maps to define lens shapes. While this

gives the application designer much flexibility in the creation of desired lens shapes, it

suffers from aliasing artifacts due to the limited resolution of the rasterized lens shape

description.

Best (2007) gave a detailed tabular overview of different lens rendering approaches,

their respective capability for composition, and the number of required render passes.

Past publications have introduced different terms for the description of a class tools

that implement the Magic Lens metaphor of Bier et al. In the remainder of this text,

we use the term volumetric lenses to refer to dynamic three-dimensional focus regions

that are spatially constrained and offer alternative visual presentations of enclosed

geometry or display deviating content to the user within its boundaries. This concept

is extended to the notion of spatiotemporal lenses in Chapter 4 to introduce space-time

variations on time-varying datasets.

1.4.7 Lenses as Foci in Virtual Environments

Benford & Fahlén (1993) introduced a spatial model for interaction in virtual

environments that describes mutual awareness of objects in large virtual scenes. In

terms of their model, a single volumetric lens can serve as an adapter object, which

enables a user to define his focus and–if the lens is visible to collaborating users–lets

others be aware of its location and extent. Accordingly, multiple scattered lenses

can be used to switch between different foci, enabling users to direct the attention of

14

collaborators to certain regions of interest.

As the intersection with a volumetric lens causes objects in the environment to

change their visual presentation, the lens tool can also be interpreted to be defining a

nimbus. Benford & Fahlén use the term nimbus to refer to the level of awareness an

observed object has of its observer.

Whereas the idea of their use as collaborative tools in virtual environments seems

apparent, possible benefits of utilizing volumetric lenses for computer-supported

collaborative work (CSCW) have yet to be investigated.

Besides its applications in virtual environments, research in the Augmented Reality

community has also adapted the Magic Lens metaphor to create a variety of tools;

examples include object selection using virtual lenses as presented in Looser et al.

(2007) and lenses in concert with a MagicBook interface as described in Looser et al.

(2004). A thorough overview of focus and context in Augmented Reality and related

areas was given by Looser (2007).

15

Chapter 2

Scene Graph Architecture for Real-time Rendering Systems

2.1 Motivation

This chapter gives an overview of using scene graph structures in the context of

real-time rendering systems. Basic concepts and techniques are presented to add to the

understanding of our application design presented in Section 3.2. We also introduce

terminology related to scene graph architecture that is used in subsequent chapters.

The early years of interactive 3D application development were characterized by

a multitude of system implementations that were highly reflective of the capabilities

and restrictions of the available low-level graphics programming interfaces. While

programming languages like C++ made high-level abstractions of data structures

and their related operations more accessible than ever before, the representations of

three-dimensional scenes were mostly designed based on the drawing primitives used

in the underlying graphics architecture. Using this approach might speed up the

initial application development process, but its weaknesses become apparent when

applications need to be adapted for different architectures or when more sophisticated

user interaction with the scene is required.

For example, many users would intuitively expect an interactive application to allow

for direct manipulation of individual scene objects presented to them (e.g., moving

a book from a shelf to a table). However, if the design of the scene object’s data

structures is primarily determined by the graphics primitives needed for rendering,

high-level manipulation of objects and their relationships becomes increasingly difficult

to implement. With a growing desire for more natural and intuitive forms of interaction

and more independence from low-level graphics architectures, it became apparent that

three-dimensional scenes need to be designed as consisting of abstract, editable objects

in order to allow for direct scene manipulation and guarantee extensibility of the overall

application.

2.2 Definition

An object-oriented approach to describing a geometric scene or environment

(ranging from a single polygon to virtual worlds containing thousands of characters)

was introduced by Strauss & Carey (1992). They established the concept of using

a directed acyclic graph (DAG) structure for dynamic representations of three-

dimensional scenes. The graph consists of nodes, which may represent scene object

geometry (e.g., polygon meshes), specifications for object presentation (e.g., surface

material properties), or structural elements defining graph traversal behavior (e.g.,

group nodes, camera nodes, or transform nodes). The graph has to be acyclic to

prohibit infinite loops during traversal and to allow the identification of unique paths

through the graph.

The graph structure establishes hierarchical relationships between nodes and allows

multiple references to identical elements. This is highly desirable, as the description

of duplicate scene objects with identical geometry has to be provided only once.

Integrating multiple copies of the object into the scene then merely requires adding a

reference to the object description node to nodes already present in the graph. This

17

Figure 2.1: Example of a scene graph structure and a corresponding graphical rendering
of the contained objects. Although both bunny objects share the same geometric data,
their appearance differs due to the different render state sets connected to their parent
nodes. As can be seen from the graph structure, the ball and one of the bunnies share
identical render state sets. Each of the three objects is positioned in space using its
parent transform node.

reference becomes a directed edge of the scene graph. The same is true for presentation

properties that may be reused across multiple objects without the need for duplication

(e.g., a GPU shader program implementing a certain surface shading effect that is to

be applied to multiple scene objects). Figure 2.1 illustrates the concept by juxtaposing

an abstract scene graph structure and a visual rendering of its elements.

2.2.1 Graph Traversal

To compute any results (e.g., visual rendering) from a given scene graph structure,

a depth-first traversal of the graph is initiated at a root node (not necessarily the global

root node, though) and a predefined action is performed on every visited node. Typical

18

actions include drawing, intersecting, culling, or computing a bounding volume. Many

concrete implementations of scene graph traversals employ the Visitor design pattern

as described in detail by Gamma et al. (1994). The use of the Visitor pattern allows

the application programmer to keep algorithm implementations (e.g., intersection

calculation) and the scene graph structure separate from each other. New actions can

easily be added without alterations to the interface of the scene graph’s node classes.

Most actions performed on the scene graph require the successive aggregation of

node attributes during graph traversal. A prominent example is the accumulation of

geometric transforms that allows three-dimensional coordinates originally expressed

with respect to a local coordinate systems to be expressed in the world coordinate

frame.

An update visitor traversal is generally used to allow for animated scene objects

and frequent state changes. If parts of the scene are to change their transform or

internal state over time, they typically realize this behavior as a callback mechanism

triggered by the update visitor. The visitor object contains a time stamp that may be

used by visited nodes to determine their time based state. We will describe in Chapter

4 how to exploit this mechanism for the implementation of spatiotemporal lenses.

2.2.2 Graphics System Interface

In general, many offline rendering systems (e.g., implementations of the RenderMan

interface specification [Pixar (2009)]) also employ scene graphs to represent three-

dimensional scenes, but work independently from an underlying graphics API

19

(application programming interface). In contrast, scene graph-based real-time

rendering systems–which are of concern throughout this work–are built on top of a

specific graphics API (e.g., OpenGL or DirectX) that interfaces with low-level graphics

routines. A typical scene graph library therefore abstracts the low-level calls made

to the graphics API and exposes them indirectly through manipulation of high-level

objects (e.g., three-dimensional text or a geometric model imported from a file). The

graphics API in turn abstracts the actual implementation of graphics routines and

computations which for the most part are executed entirely on the graphics processing

hardware itself.

2.3 OpenSceneGraph

Ever since the influential paper of Strauss & Carey (1992), several scene graph

libraries and toolkits have been developed and used for research and engineering by

the computer graphics community. Today, several open source scene graph libraries

exist that allow the use of high-level scene object descriptions without compromising

rendering performance. Prominent examples are OpenSG, Coin3D, OGRE, and

OpenSceneGraph.

The images and performance results given in this work were generated using the

author’s implementation of the presented techniques; the implemented system relies on

the OpenSceneGraph libraries and many of its base data types (e.g., geometry nodes,

graph traversals using visitors, space partitioning using k -d trees).

The decision to implement the described lens rendering techniques using a modern

20

scene graph toolkit was mainly based on the fact that established techniques for

hierarchical scene design, efficient space partitioning using k -d trees, culling techniques,

and abstractions of GPU shader programs were available as part of the library. This

allowed us to focus on the implementation of essential parts of our lens rendering

system and compare different approaches in a timely manner. In addition, it enables us

to present our techniques and results in a concise way using scene graph terminology,

as the related concepts are established and widely known in the computer graphics

community.

2.3.1 Geometry and State Sets

Similar to the original distinction made by Strauss & Carey (1992), OpenScene-

Graph’s data types can be categorized into those representing scene content (i.e.,

geometry as polygonal meshes) and those defining the way that content is rendered

(render state sets). The state sets describe the instantaneous state of the underlying

OpenGL graphics system by defining attribute values for common rendering settings

(e.g., material properties, pixel blending mode, depth buffer activation, etc.). The

distinction between geometry and state sets gives an application programmer the abil-

ity to reuse identical data structures representing scene geometry for different visual

presentations. In addition, render state sets may easily be applied to multiple different

geometries and the drawing process can be optimized by automatically choosing a

render order that minimizes necessary state changes to the OpenGL system.

21

Chapter 3

Single-Pass Rendering and Advanced Composition of Volumetric Lenses

3.1 Motivation

We mentioned previously that volumetric lens tools were integrated into the

rendering system used by our research group. The system was used frequently by

geologists for visualization and interpretation of topological datasets. The continual

observation of users working with the volumetric lenses as well as the integration of the

rendering techniques with a modern scene graph system helped us to identify several

implementation guidelines for volumetric lens tools. We present these principles in the

following paragraphs and detail how they are reflected in our system implementation

and the new single-pass rendering technique.

Make the common case(s) fast. The Magic Lens interface metaphor adapted for

volumetric lenses dictates that a user has to intersect pieces of geometry with the

lens volume in order to apply the respective lens effect. Therefore, lenses that do

not intersect any scene geometry will not provide any benefit to the user and in turn

we can identify the lens-geometry intersection as a very common case. In order to

speed up the positive intersection test, we employ two data structures that allow for

an economic implementation of the problem: k -d trees are used for efficient space

partitioning of scene geometry and a specialized k -DOP (discrete orientation polytope)

acts as bounding volume representation for individual lenses and their intersections.

We also found simple lens shapes (e.g., boxes, spheres) to be suitable and sufficient

for our applications. Therefore, we can often achieve a reasonable approximation of

the real lens volume by employing a 6-sided k -DOP bounding volume.

In addition, best use of the tool can only be made if the process of transforming

and intersecting lenses interactively does not have a distracting negative impact on

rendering performance. Introducing additional lens intersections and interactively

repositioning lens volumes ideally should not affect the responsiveness and update rate

of the system at all. The compilation of a shader program on the GPU during run-time

is known to introduce a noticeable time lag in the responsiveness of the rendering

system. Therefore, our algorithm design requires that no additional shader program

compilation is to be necessary for lens transformation and intersection. However, we

show in Section 3.4.5 that our approach may require the compilation of a new GPU

program once the order of lenses or the blending mode of a lens is changed. Whereas

we expect the compilation time of an individual GPU program to be similar to the

system of Best & Borst (2008), our approach lowers the frequency of creating new GPU

programs when the user introduces lens intersection regions.

For generality, our algorithm should not rely heavily on optimized geometry tiling.

The evaluation given in Borst et al. (2007) points out that the performance of the

rendering algorithm proposed by Best & Borst depends strongly on effective space

partitioning of scene geometry. The author showed that selecting an adequate tiling

resolution for a given dataset becomes crucial for obtaining good performance. However,

flexible tiling techniques for arbitrary geometry are not generally available and in some

cases active partitioning of large geometric models might be explicitly not desired. As

an example, the computational overhead introduced by the maintenance and culling

23

techniques for a large number of tiles might outweigh the performance decrease caused

by sending redundant (invisible) geometry through the GPU pipeline. This is the case

in particular if the computation related to tiling is performed entirely on the CPU and

cannot be refactored to exploit parallel execution.

Our single-pass rendering approach presented in Section 3.4 reduces the sensitivity

to optimized scene partitioning by avoiding redundancy with respect to fragment

computations. By using a single render pass for geometry intersected by one or

multiple lenses, we avoid an increase in the number of fragments to consider for

a growing number of lenses. In contrast to the approach of Best & Borst, our

approach keeps the number of fragment computations constant when new lenses or

lens intersections are created and only fragment-level effects are considered.

Exploit the growing capabilities of graphics processing hardware. Many shader

effects that rely on per-vertex attributes (e.g., surface normal or material attributes)

to calculate their results can often be evaluated as a per-fragment operation. Increased

performance due to highly parallel execution of shader programs on modern GPUs

allows per-fragment evaluation of such effects (e.g., Phong shading) without introducing

a noticeable performance penalty. In addition, the visual realism of simulated shading

effects can often be drastically improved if the full shading equation is evaluated per

(sub)pixel instead of using interpolated results.

The single-pass lens rendering technique introduced in this chapter exploits this

recent development by delaying the complete shading computation of individual

(sub)pixels until the fragment shader stage. In doing this, the membership of an

24

individual fragment to a lens region or a lens intersection region can be determined

explicitly before any region specific effects are computed.

3.2 Application Design

We implemented the described techniques using C++ and OpenGL Shading

Language (GLSL). Our system relies exclusively on libraries that support compilation

and execution on a variety of operating systems and architectures. Several open source

toolkits were used in the development process.

VR Juggler is used to support a wide variety of input and output devices and allows

us to configure the application to run in diverse visualization environments. Besides

testing the application in a single machine desktop environment, it was presented as

a research demo employing stereoscopic rendering on a tiled multi-projector display

(Tiesel et al., 2009).

We were able to exploit many of the data structures and operations related to

scene graph computations that are part of the OpenSceneGraph library. Our system

was designed with the prospect of aggregating techniques and node types related to

volumetric lenses into a self-contained node kit that may be seamlessly integrated with

existing visualization systems based on OpenSceneGraph. A node kit is a collection of

scene graph nodes that provides interrelated functionality or abstractions. Common

examples include node kits for rendering shadows, volumetric data, or terrain models.

Figure 3.1 gives an overview of the computational framework employed to create

renderings of volumetric lens effects using CPU and GPU hardware. User interface

25

CPU

Scene Graph(s)

GPU
Vertex Shader

Generates shader programs
for n content scene graphs

Draw
traversal

Vertex Attribute Namespace

calls

calls

Lens + Effect
Parameters
uniform

lens transforms
light color
...

Interpolated
Attributes
varying

vertex w.r.t. lens
surface normal
view vector
...

Framebuffer
output

gl_FragColor
gl_FragDepth
...

Fragment Attribute Namespace

Fragment Shader

v
f

Scene-Lens
Intersection
Processing

User
Interface

Composite Shader
Effect Factory

Figure 3.1: Simplified overview of our application framework showing the interaction
between CPU and GPU computation.

elements alter the structure of the scene graph, for example by creating or moving

volumetric lenses. Scene-lens intersections are calculated whenever the scene graph

changes and they determine the scene elements that need to be rendered using a

specialized GPU shader program generated by the Shader Factory module. Final

visual results are computed by the GPU during the draw traversal of the scene graph

initiated by the CPU. By processing scene geometry using the dynamically-generated

GPU programs, proper rendering of lens effects and clipping is achieved. We describe

the interaction between the different parts of our system in more detail in the following

sections.

3.3 Volumetric Lens Rendering

Our implementation of volumetric lens rendering includes dynamically-generated

GPU shader programs. We employ GLSL to formulate program computations.

26

Individual lens effects are defined in text files holding meta information (i.e., name,

type, local parameters, etc.) and the GLSL source code that performs the computation

necessary to achieve the respective effect. Using this approach, a large variety of

shading effects may be applied to geometry intersected by a volumetric lens. Whereas

geological visualizations may benefit from lens effects that use alternative color mapping

schemes or show a cut-away view of the rendered topology, other applications may

require lens effects to incorporate complex shading models that simulate physical light

reflection behavior. By ultimately controlling the shading computation for every pixel

fragment being presented to the user, any of the stated effects can be achieved using

custom GPU shader programs.

The generated shader programs are executed entirely on the graphics hardware

and invoke vertex and fragment level lens effects, including per-fragment clipping of

scene geometry at lens boundaries. Whereas previous approaches at volumetric lens

rendering used up to 2n shader programs and render passes for a scene containing n

lenses, we show in this work how a single render pass and GPU program can be used

in certain cases to achieve the same visual result and better performance. We state

details on the number of render passes and GPU programs required using our approach

in Section 3.4.4.

3.3.1 Lens-scene Intersection

We employ optimized scene graph traversals to find geometry that is intersected

by a particular lens volume and automatically apply the corresponding GPU program

27

R₁ = {p₁, p₂, p₃, p₄} R₁ = {p₁, p₂, p₃, p₄}
R₂ = {p₅, p₆, p₇, p₈}
R₃ = R₁ ∪ R₂

Figure 3.2: The left-hand side shows a polytope bounding volume defined by four planes
projected into 2D space. Normals of polytope planes are defined to point towards the
inside of the represented volume. The right-hand side shows how a polytope may be
used to represent the intersection volume of two overlapping polytopes. By creating a
union of the original sets of planes (R1 and R2), an intersection volume is defined by
the set of planes denoted as R3.

to be used for object rendering. Lens bounding volumes are represented by a 6-sided

k -DOP (discrete orientation polytope). This data structure offers an efficient test for

individual vertices of a mesh to determine their in-out status with respect to a lens

volume. Figure 3.2 shows a 2D projection of a polytope defined by four planes. Each

plane is specified using its normal direction and the plane’s minimum distance to the

origin. The polytopes used in our implementation are therefore represented by a set

of planes. The right-hand side of Figure 3.2 shows how an intersection region can be

created from two polytopes using a union operation on their set of planes.

In addition, we employ a k -d tree/line segment intersection test using the corners

of the lens bounding box to speed up the detection of positive intersection results for

scene geometry. For each 6-sided polytope representing a cubic lens bounding volume,

28

Figure 3.3: Illustration of all 28 possible line segments extracted from the cubic
polytope’s corner vertices. Different colors used for illustrative purposes only.

we use its 8 corner vertices to iterate through all 28 possible non-directed edges and

use them as line segments for k -d tree intersection. Figure 3.3 illustrates the approach.

Subsequently, every geometry node affected by a lens is rendered using the respective

GPU program, while the rest of the scene is rendered without changes. We achieve

this by creating shallow copies of the intersected geometry nodes that inherit the

accumulated state of the original (containing geometric transforms and render state

attributes like textures or material properties). There are two reasons why duplicates

rather than the original geometry nodes are used.

• Our rendering algorithm should be “non-intrusive,” i.e., the changes to the

original scene graph structure are to be kept to a minimum. Adding the

activation of a GPU program to the render state set of a contained geometry

node would violate this rule.

• In some cases it may be necessary to create multiple renderings of a geometry

node using different GPU programs. We show in Chapter 4 that this is a

requirement for correct rendering of spatiotemporal lens effects.

29

Finally, the GPU program implementing lens effects and clipping is added as an

additional attribute to the render state set of the geometry node copy. During the

next draw traversal of the scene graph, all geometry intersected by lens volumes will

be rendered using respective lens effects and clipping as defined in the attached shader

program. Duplicated geometry nodes are added to the scene graph hierarchy under a

common group node. Removing the lens rendering mechanisms from the scene graphs

then consists solely of removing the parent group node holding all copied geometry

that is affected by lenses.

Lens-scene intersections and the subsequent tasks described above (copying of

geometry nodes, creation of GPU programs, etc.) have to be performed only if relevant

parts of the scene graph change. Typically, this is the case when a lens or other

relevant objects are transformed or when scene objects are created or deleted. The sub

scene graph holding the duplicated geometry nodes that are rendered using respective

GPU programs during draw traversal serves as a simple caching mechanism for lens

interactions with the scene.

It is necessary to incorporate the accumulated state information of intersected

geometry into the shallow copy created for rendering in order to guarantee an identical

visual presentation. We establish the accumulated state of an intersected geometry

node by obtaining the complete path from the root node to the geometry leaf, iterating

through the contained nodes, and successively accumulating state information. Render

state attributes connected to each traversed node are successively added to a common

set of attributes. Once all nodes in the path have been considered, the accumulated

30

state set represents the OpenGL rendering state that would be used for rendering of

the geometry node during a regular draw traversal. Geometric transforms encountered

during an iteration are multiplied sequentially to eventually obtain the accumulated

geometric transform root
geometryT. This matrix expresses the geometry’s local coordinate

system with respect to the root scene graph coordinate system. The transform and

render state set are then assigned to the copy of the original geometry leaf.

We implement object-level effects by applying the described intersection strategy

to different sub scene graphs that hold data to be rendered inside of the lens. Although

the scene-lens intersection and the geometry node duplication process are identical to

the case described above, alternative GPU programs need to be generated for each

distinct content scene graph. Section 3.4.6 gives details why this is necessary to allow

for correct clipping of content in lens intersection regions.

3.3.2 Lens Frame Transformation and Clipping

For each lens i, we calculate the matrix eye
lensi

T, which transforms from lens

coordinates to eye coordinates, and pass its inverse to the shader program. The vertex

shader then uses eye
lensi

T−1 = lensi

eye T and the current OpenGL modelview matrix eye
modelT

to transform the position modelv of an incoming vertex from the model coordinate

system of the rendered geometry to a Cartesian lens coordinate system:

lensiv = lensi

eye T ∗ eye
modelT ∗

modelv. (3.1)

By calculating the partial result eye
modelT ∗

modelv in the vertex shader, we can reduce

31

World

Eye

Tworld
eye

Tworld
model

Tworld
lens

Lens

Model

Figure 3.4: Overview of coordinate systems relevant for rendering of volumetric lens
effects.

the computational cost per lens required to transform vertices into the respective lens

coordinate system to a single matrix-vector multiplication. Figure 3.4 gives an overview

of the coordinate systems referred to in the above transforms.

Linear interpolation of lensiv between the vertices of a primitive is performed by

the graphics hardware and provides a per-fragment coordinate expressed in the lens

coordinate system. This allows us to perform an efficient in-out test to determine if

the fragment falls inside the boundaries of a particular lens. Individual lens shapes

and their respective clipping behaviors are then defined by corresponding in-out tests

evaluated within the fragment shader program.

Figure 3.5 gives the effect description for the lens transform computation of

Equation 3.1. The effect definition for an in-out test resulting in a spherical lens shape

is given in Figure 3.6. Note how lensiv is computed as part of the per-vertex processing

(vertex wrt lens), while its interpolated value is used by the per-fragment evaluation

of the in-out test performed by the code given in Figure 3.6.

32

@−−−HEADER−−−@
Volumetric Lens Transform
EFFECT TYPE TRANSFORM
void LensSpaceTransform V ()
NULL
@−−−PARAMETERS−−−@
// The in v e r s e transform of l e n s wrt eye prov ided
// by the a p p l i c a t i o n
mat4 eye wr t l en s
@−−−GLOBAL−ATTRIBUTES−−−@
@−−−LOCAL−ATTRIBUTES−−−@
// This l o c a l v e r t e x p o s i t i o n i s i n t e r p o l a t e d in
// hardware f o r the fragment shader so t h a t l e n s
// c l i p p i n g can be done the re wrt the l e n s
// coord ina te system
varying vec3 v e r t e x w r t l e n s ;

@−−−VERTEX−SHADER−−−@
// This i s precomputed in i n i t i a l i z e a t t r i b u t e s . shader
vec4 ve r t ex wr t eye ;

void LensSpaceTransform V ()
{

// Transform incoming v e r t e x from eye coord ina te system
// in to l o c a l l e n s coord ina te system us ing the transform
// prov ided by the a p p l i c a t i o n
v e r t e x w r t l e n s = (eye wr t l en s ∗ ver t ex wr t eye) . xyz ;

}

Figure 3.5: Complete effect definition for the lens space transform performed for each
lens in the scene. The premultiplied vertex expressed in the eye coordinate system is
transformed into the local coordinate system of the lens. By the declaring the variable
to be of type varying, automatic hardware interpolation of its value across rendered
fragments is applied.

33

@−−−HEADER−−−@
Sphe r i c a l Lens Region Test
EFFECT TYPE REGION TEST
NULL
bool i sVe r t ex In s i d eLen s Sphe r i c a l F ()
@−−−PARAMETERS−−−@
f loat l e n s s i z e 0 .05
@−−−GLOBAL−ATTRIBUTES−−−@
@−−−LOCAL−ATTRIBUTES−−−@
// This l o c a l v e r t e x p o s i t i o n i s i n t e r p o l a t e d in
// hardware f o r the fragment shader so t h a t l e n s
// c l i p p i n g can be done the re wrt the l e n s
// coord ina te system
varying vec3 v e r t e x w r t l e n s ;
@−−−FRAGMENT−SHADER−−−@
bool i sVe r t ex In s i d eLen s Sphe r i c a l F ()
{

bool i sVe r t ex In s i d e = true ;

i f (l ength (v e r t e x w r t l e n s) > l e n s s i z e)
i sVe r t ex In s i d e = fa l se ;

return i sVe r t ex In s i d e ;
}

Figure 3.6: Sample effect definition for a region test of a spherical lens performed in
the lens coordinate system.

For simple lens shapes (e.g., box, sphere), the in-out tests can be stated as simple

range or distance tests. However, a 2D texture map with a corresponding threshold test

may also be used to define the shape of a lens volume as an extruded texture. Figure

3.7 gives an example rendering of a lens shape defined by a 2D texture map. Likewise,

a 3D texture may be used to define the volumetric shape of a lens. However, it has to

be noted that the approaches employing textures suffer from aliasing artifacts at shape

boundaries and need to incorporate techniques like texture filtering to improve visual

34

Figure 3.7: Two lens examples using different in-out tests to define their shape.
Whereas the lens applying the red fabric effect has a spherical shape, a 2D texture is
used for the marble effect lens to create an extruded “fleur-de-lis” volume.

results.

3.4 Single-pass Lens Rendering Technique

3.4.1 Note on Terminology: Single-pass versus Multi-pass

Throughout the following sections, we use the terms “single-pass” and “multi-pass”

frequently to refer to technical differences between rendering approaches for volumetric

lens effects. To clarify our implications when using those terms, we give a definition of

“single-pass” and “multi-pass” rendering with respect to volumetric lens rendering in

the following paragraphs.

In general, the term multi-pass rendering refers to repeated processing of an

35

object’s geometric description by the graphics pipeline (including vertex and fragment

shader stages) to achieve a distinct visual rendering effect for the respective object.

For example, several non-photorealistic rendering (NPR) techniques require multiple

render passes to each draw distinct elements of the final image. The first pass processed

by the graphics pipeline could be used to draw a solid outline of the object, while

subsequent passes are used to shade the object’s surface. In contrast, a single-pass

approach requires the geometric description of an object to be processed by the GPU

only once to render the desired effect. Generally, this distinction is only made on the

application programmer’s side; users of a real-time rendering system are not generally

aware of the rendering technique used to draw a certain object.

In the context of volumetric lens rendering, we use the term “single-pass” for a

rendering technique if lens effects applied to a scene object by one or more lenses can

be rendered by processing the object’s geometry exactly once. The term “object” here

refers to a certain instance of a geometry node for which a unique node path exists.

For example, the bunnies rendered in Figure 2.1 share the same geometry node, but

have different node paths (each including a unique transform node). According to our

terminology, we treat them as separate objects. Therefore, we also consider lens effects

that apply a transform to intersected geometry (e.g., “source box” effect described by

(Borst et al., 2007)) to belong to the class of object-level effects. Likewise, we show in

Chapter 4 that rendering of an object at a different time instant has to be treated as

an object-level effect. In general, using a single-pass rendering approach, object-level

effects are rendered by GPU processing of the geometry of each involved object exactly

36

once.

The single-pass technique presented in the following sections achieves rendering

of fragment-level lens effects for multiple lenses by one-time GPU processing of an

object’s geometry.

In contrast, we call the rendering approach of Best & Borst (2008) a multi-pass

technique as it requires the repeated GPU processing of an object visible in multiple

lenses or lens intersection regions. However, for a case in which only object-level effects

are applied inside of non-intersecting lens volumes, the technique of Best & Borst

(2008) achieves lens rendering by processing each object’s geometry only once. While

this special case satisfies our requirement of a single-pass approach, we still consider

the technique to be multi-pass because

• substantial parts of our work (including the performance comparison of both

approaches) are concerned with fragment-level effects–for which the approach of

Best & Borst (2008) always requires multiple render passes–and

• the example is a special case rather than the generally observed behavior when

applying lens effects to scene geometry.

3.4.2 Motivation

The rendering technique suggested by Best & Borst (2008) requires an additional

render pass for each lens and for every lens intersection region, resulting in a maximum

number of 2n passes, where n is the number of lenses in the scene. Following their

approach, each pass renders only fragments that fall inside a single lens (intersection)

37

region; fragments found to be outside of the region are discarded after performing all

in-out tests. As discussed by the authors, the technique therefore relies on efficient

tiling of high resolution meshes to reduce the number of fragments being discarded in

each render pass.

However, we can achieve the same visual result (and often much better rendering

performance) in the case of lens effects that can be evaluated at the fragment stage.

For this case, we integrate all necessary computation into a single geometry render

pass. There are, however, limitations to this approach with respect to the types of lens

effects that may be rendered. We illustrate the differences between effect categories in

the following section.

3.4.3 Supported Lens Effect Categories

In their work on composable lens effects, Best & Borst (2008) denote three distinct

types of lens effects that may be applied to intersected geometry.

• Object-level effects replace objects or data inside the focus region defined by the

lens (e.g., x-ray vision);

• Vertex-level effects modify the position or other attributes of individual geometry

points (e.g., magnifying lens); and

• Fragment-level effects alter the shading of individual (sub)pixels; a multitude of

color, lighting, and clipping effects may be implemented using this approach.

This distinction between different effect categories is more relevant for the

implementation view of volumetric lenses rather than the user’s perception of different

38

lens effect types. Whereas for some effects the difference in effect category may be

obvious to users (e.g., replacing the object inside the lens versus merely applying a

different color to it), other effects like magnification may be implemented as either

object-level or vertex-level effect and may not easily be categorized by a user of the

system.

Most of the lens effects that we have employed for the exploration of geological

datasets in the past (e.g., color map, lighting, distance tool, clipping) can be evaluated

entirely at the fragment stage. To compensate for any computation necessary at the

vertex level, we initialize commonly used variables (surface normal, viewing vector,

etc.) at the vertex stage and provide their interpolated values to the fragment shader.

An example of a lens effect that cannot be rendered correctly using a single

geometry pass is any type of vertex displacement effect (e.g., magnification lens).

However, object magnification can alternatively be achieved as an object-level effect

by rendering a scaled copy of the intersected geometry within the lens. Note that

rendering of object-level effects generally requires more than one render pass and GPU

program–even if identical geometry at a different scale is used. This is due to the fact

that identical parts of the geometry might be visible both inside and outside of the

lens–an effect which we cannot generally achieve by sending the respective geometry

through the GPU pipeline only once. In addition, any geometric transform applied by

a volumetric lens, e.g., the implementation of a “source box” as described by Borst

et al. (2007), represents an object-level effect and has to be rendered using multiple

GPU programs and–if the focus and context geometry are identical–multiple render

39

passes of identical geometry. Table 3.1 compares the lens effect categories supported

by the multi-pass rendering approach of Best & Borst (2008) and the two variations of

our single-pass approach, which are detailed in the following sections.

Object Vertex Fragment

Single-pass (Method I) X X

Single-pass (Method II) X* X

Multi-pass (Best & Borst) X X X

Table 3.1: Comparison of lens effect categories supported by different rendering
approaches. The distinction between the two single-pass methods is described in
Section 3.4.5. (*Limited clipping capabilities; see Section 3.4.6.)

3.4.4 Comparison of Required Render Passes

In order to render all lens effects and their compositions in a single render pass,

we need to consider all possible lens combinations inside of a single GPU program

consisting of vertex and fragment shader code. We first generate individual lens

programs that compute corresponding lens effects and that are eventually linked to the

“front-end” program containing the main() entry point. Every linked effect exposes a

function calling convention that is used in the main() method of the shader program

to invoke individual effect implementations.

Figure 3.8 gives a comparison of the required geometry render passes for a simple

scene using our rendering technique and the multi-pass approach of Best & Borst.

Note that for object-level effects, multiple objects need to be drawn independently

(i.e., alternating geometry inside and outside of a lens volume). However, we can draw

each object using a single geometry pass regardless of the number of lenses or lens

40

Bunny

GL
4

GL
4

GL
4

GL
4

GL
4

GL
4

GL
4

GL
4

Render state set
(including generated
GPU shader program)

Transform & group node

GL
4

a)

Bunny

GL
4

b)

Bunny

GL
4

Teapot

GL
4

c)

Figure 3.8: The left-hand side of the illustration compares the number of geometry
render passes required to draw a scene containing a single piece of geometry (bunny)
that is intersected by three volumetric lenses applying fragment-level effects. The
lenses intersect each other and create a total number of eight distinct regions (including
the region outside of all lens volumes). a) shows the (sub) scene graph created using
a multi-pass rendering technique, while b) shows the scene graph created using our
technique. The multi-pass approach requires eight different GPU programs and invokes
eight draw calls of the bunny geometry. We achieve the same visual result using a
single GPU program and only one geometry pass. Similarly, c) gives an example of
how rendering of lenses intersecting multiple objects requires one GPU program and
one draw call per object.

41

010

100

110

011

101
111

001

B

A

C

B

C

A

Figure 3.9: Schematic view of lens (intersection) regions and their respective region
bitmasks (left). The region bitmask is established depending on the fragment’s position
with respect to the lenses in the scene. A fragment that is outside of all lens volumes
results in a mask of 000. Lens order is A-B-C, with A being the lens effect that
is applied last. Desired clipping behavior for varying lens content (depicted by the
different fill colors used for the lenses) is exemplified on the right.

intersections in the scene. We show in Section 3.4.6 how clipping of object-level effects

is achieved using our approach.

3.4.5 Lens Composition and Clipping using Region Bitmasks

We determine the lens effects that need to be applied to a single fragment arriving

at the fragment shader by performing the lens in-out tests as described in Section 3.3.2.

From per-lens test results, we establish a composite region bitmask that determines the

membership of a fragment to a certain lens (intersection) region. Figure 3.9 illustrates

the concept for an example case containing three lenses. Once the region bitmask

is found, its value may be used to conditionally branch to a respective sequence of

effect calls that implements the (composite) effect for the specific region. Figure 3.10

contains abbreviated pseudocode for a “front-end” program generated for the example

case illustrated in Figure 3.9.

42

region ← 000
if fragment is inside of lens C then

region ← region OR 001

if fragment is inside of lens B then
region ← region OR 010

if fragment is inside of lens A then
region ← region OR 100

if region = 000 then
apply the object’s standard rendering effect

else if region = 001 then
activate blend mode of lens C
apply effect of lens C
shade fragment

else if region = 010 then
activate blend mode of lens B
apply effect of lens B
shade fragment

else if region = 011 then
activate blend mode of lens C
apply effect of lens C
activate blend mode of lens B
apply effect of lens B
shade fragment

else if region = 100 then
...

Figure 3.10: Pseudocode (abbreviated) of fragment shader program used to render
a scene containing three lenses (Method I).

Not shown in the code of Figure 3.10 is the potential for optimization of certain

effect sequences in a single branch during the creation of the shader source code. For

example, if a lens effect A is known to overwrite the state changes previously computed

by effect B, we can omit the call to effect B altogether and only compute the results of

effect A. We note that while we can compute the resulting scene containing n lenses in

a single geometry pass for each content sub graph, the number of possible regions to

be considered in the fragment shader program grows exponentially (2n cases).

43

This rapidly growing number of designated branches results in a maximum number

of six lenses rendered at the same time using our hardware configuration as stated in

Section 3.6.2. The limiting factor is the maximum instruction count for the fragment

shader program supported by the utilized graphics card.

In order to support a higher number of lenses and avoid the large number of

conditional branches, we suggest an alternative variant of the “front-end” program.

Instead of delaying any effect computations until the complete evaluation of the region

bitmask, we compute intermediate results after a positive in-out test that determined

the membership of the fragment to an individual lens volume.

After the region bitmask evaluation is completed, we can determine whether to

shade the fragment using the previously computed attributes (if the fragment is inside

any of the lenses) or using the object’s standard shading program (e.g., OpenGL’s

fixed-function fragment shader). Pseudocode for this approach (labeled Method II) is

given in Figure 3.11.

Using implementation Method II, we were able to render scenes containing ten

lenses at interactive update rates. Whereas our approach generally supports even more

lenses, the limiting factor is the available number of varying floats supported by the

graphics card, as a three-dimensional float vector is used to interpolate lensiv for every

lens in the scene. The employed graphics hardware specified in Section 3.6 supports

up to 60 floating point variables of type “varying,” which corresponds to a maximum

number of 20 lenses–if no other varying floats are needed for effect computation.

44

region ← 000
if fragment is inside of lens C then

activate blend mode of lens C
apply effect of lens C
region ← region OR 001

if fragment is inside of lens B then
activate blend mode of lens B
apply effect of lens B
region ← region OR 010

if fragment is inside of lens A then
activate blend mode of lens A
apply effect of lens A
region ← region OR 100

if region = 000 then
apply the object’s standard rendering effect

else
shade fragment

Figure 3.11: Pseudocode of fragment shader program used to render a scene
containing three lenses (Method II).

3.4.6 Order-based Lens Clipping

If lenses are to render geometry inside of their boundaries that is different from the

surrounding context (for example, a different dataset available for the same region), an

individual shader program has to be created for each unique content sub graph. This is

due to the fact that clipping behavior will differ depending on what elements are to be

rendered. However, our single-pass rendering approach can still be used to eliminate

the need for rendering geometric elements that are shared by multiple lenses more than

once. Each individual shader program then has to consider all possible 2n branches for

n lenses.

In regions created by 3D lens intersections, volumetric lenses do not reveal an

inherent ordering as is often the case for their 2D counterparts, where a lens closest

45

to the viewer occludes parts of other intersected lenses. We would like to achieve a

similar effect that allows for an unobstructed view of the content shown inside of the

most recently selected lens volume.

Therefore, lenses with diverse content need to apply clipping in their intersection

regions depending on their respective order. We let users define lens order based on

which lenses were recently interacted with and give the option to temporarily lock

a certain lens order. The right-hand side of Figure 3.9 shows desired lens clipping

behavior based on order. In the example, lens A was selected most recently and is

therefore “in the foreground.” Note how the lens order determines the clipping behavior

of individual lens content with respect to involved intersection regions. In addition to

the relevance of lens order for object-level effects, we show in Section 3.5.5 how the

order of lenses is used to determine the composition behavior of involved fragment-level

lens effects. The user can therefore control lens clipping behavior of object-level

effects and the order in which fragment-level effects are applied by repeatedly selecting

different lenses. In addition, our system allows users to lock a certain lens order.

For a correct implementation of the desired lens clipping, we need to be able to

define clipping behavior per region. This can easily be achieved by discarding individual

fragments inside of respective conditional branches using implementation Method I

(given in Figure 3.10). In order to render the example scene shown in Figure 3.9, three

distinct shader programs would have to be created for a correct implementation of the

desired clipping based on lens order. For example, the shader program used to render

the content of lens A would discard all fragments with a bitmask of 000, 001, 010,

46

Figure 3.12: Example scene showing order-based clipping of lens content rendered
using Method I. The currently selected lens is shown with a green outline. Note how
the clipping of individual lenses changes as the user successively selects lenses that
show different content.

and 011. The shader program generated for rendering the alternative content shown

in lens C would only render fragments with a bitmask of 001 and discard all other

cases. Figure 3.12 gives an example of order-based lens clipping behavior for lenses

with varying content graphs as rendered by our system using Method I.

Despite the fact that multiple shader programs might be necessary for rendering

of intersecting lenses, we still consider our technique a single-pass rendering approach.

This is due to the fact that geometry spanning over multiple regions will be sent to

the graphics pipeline only once. This is in contrast to earlier techniques that require a

geometry render pass and an individual GPU program for every intersection region.

However, as individual region bitmasks are not tested in Method II (Figure

3.11), the desired clipping behavior cannot be achieved using this approach. Instead,

alternating content of intersecting lenses will be “merged,” i.e., multiple content sub

graphs will be visible across multiple lens volumes. Alternatively, all fragments falling

into intersection regions of lenses with different content graphs will be discarded.

However, one of these behaviors is acceptable or even desired depending on the context

of the application. Figure 3.13 gives example renderings generated by our system to

47

Figure 3.13: The renderings illustrate the limited abilities to implement proper clipping
of intersecting lenses with different content graphs using Method II. The left-hand
image shows the clipping result if fragments in intersection regions are discarded, while
the image on the right shows the “merged” result that is generated if those fragments
are not discarded.

illustrate the described visual result.

3.5 Shader Composition Framework

Previous rendering approaches that supported composable lenses either did not

consider the composition of fragment-level lens effects in intersection regions or offered

only limited flexibility in the definition of effect composition behavior. The rendering

approach of Best & Borst (2008) supports composition of per-fragment shading effects,

but is limited regarding the number of modifiable attributes in each effect instance.

Only the predefined output variables of each respective shading unit (i.e., vertex

position, fragment color, etc.) are accessible to individual effects in the composition

process. While this approach allowed for basic composition of vertex displacement

effects and successive blending of output colors, it could not be used to model more

complex lens effect compositions and their respective blending options. One example

48

is the preservation of diverse light reflectance behaviors introduced by multiple lenses:

using only a single color channel, we will not be able to alter the diffusely reflected

material color without affecting a specular highlight added by a previous effect.

We overcome this restriction in our newer approach by introducing global attributes

such as different channels of light intensity (ambient, diffuse, specular) that can be

accessed and modified by shader effects during the execution of the shader program.

A directional light effect would, for example, modify per-fragment light intensity

according to light parameters and lens blending options. These intensity channels can

then be used by the surface shader (the last effect to be applied to a fragment) to

compute the final fragment color. The operation is called “shade fragment” in the

pseudocode examples of Figures 3.10 and 3.11. Using this approach, a Phong surface

shader could be implemented by introducing the surface normal as a varying attribute

in the vertex shader code and using its interpolated value along with global attributes

like material properties and light intensity channels in the fragment shader to compute

the final pixel color.

3.5.1 Lens Effect Definition

As mentioned earlier, individual lens effects are defined by vertex and fragment

shader source code (as they might require computation in both pipeline stages), the

declaration of variables necessary for their execution and an indication of effect type

(e.g., clipping, lighting, surface shader). Knowledge of the effect type is crucial for

reliable and optimized composition of multiple shader effects as described in Section

49

3.5.5. An example of a complete effect description for a simple color effect that alters

the diffuse reflectance properties of the surface is given in Figure 3.14.

3.5.2 Variable Naming Convention

Our naming convention for different types of variables accessible to the GPU effect

shaders is based on McCool et al. (2004).

Parameters map to read-only uniform variables accessible in both vertex and

fragment shaders and are constant per draw call. These typically describe per-lens

parameters (e.g., lens transform, light direction) and are set during the application

stage. This can be done either by statically binding their values to application

data (e.g., modifying the lens transform matrix using an interaction device) or by

dynamically exposing control over their values using introspection of the effect source

code (e.g., by letting the user change the value of a parameter of type float by dragging

a slider that is labeled with the respective name of the parameter).

Global attributes are used across shader effects to allow for progressive evaluation of

the shaded pixel color. Examples are diffuse light intensity, surface material properties,

and the currently active effect blending mode. Attributes are declared within GLSL

shader code at global scope as non-qualified variables. This allows shared read-write

access across shaders of the same type within the same linked program. As vertex and

fragment shaders each have their own global namespace, attribute values cannot be

shared between the shader units for a specific effect. This limitation can be overcome

by introducing variables of type varying. These may be written to in the vertex shader

50

@−−−HEADER−−−@
So l i d Color
EFFECT TYPE COLOR
NULL
void So l idCo lor F ()
@−−−PARAMETERS−−−@
f l o a t 3 so l i d InputCo l o r 0 0 . 3 0
@−−−GLOBAL−ATTRIBUTES−−−@
vec4 co l o r ba s e ;
vec4 mate r i a l emi s s i on , mater ia l ambient , ma t e r i a l d i f f u s e ,

ma t e r i a l sp e cu l a r ;
vec4 l i g h t em i s s i on , l i ght ambient , l i g h t d i f f u s e ,

l i g h t s p e c u l a r ;
int l i g h t e n ab l e d ;
int blend mode ;
@−−−LOCAL−ATTRIBUTES−−−@
@−−−FRAGMENT−SHADER−−−@
#define BLEND MODE REPLACE 0
#define BLEND MODE ADD 1
#define BLEND MODE SUBTRACT 2
#define BLEND MODE MULTIPLY 3

void So l idCo lor F () {
vec4 co l o r = vec4 (so l i d InputCo lo r , 1 . 0) ;

i f (blend mode == BLEND MODE REPLACE) {
co l o r ba s e = co l o r ;
ma t e r i a l d i f f u s e = co l o r ;

} else i f (blend mode == BLEND MODE ADD) {
co l o r ba s e += co l o r ;
ma t e r i a l d i f f u s e += co l o r ;

} else i f (blend mode == BLEND MODE SUBTRACT) {
co l o r ba s e −= co l o r ;
ma t e r i a l d i f f u s e −= co l o r ;

} else i f (blend mode == BLEND MODE MULTIPLY) {
co l o r ba s e ∗= co l o r ;
ma t e r i a l d i f f u s e ∗= co l o r ;

}
}

Figure 3.14: Definition of simple color lens effect including meta information, the
declaration of shader parameters and attributes, and the GLSL fragment shader code
executed on the graphics processing unit.

51

code and the graphics hardware will interpolate their values for each fragment. The

interpolated value is then accessible inside the fragment shader. Prominent examples

include the geometry’s surface normal and the current view vector.

Local attributes may be used to introduce per-lens varying variables. The difference

to the previously described global attributes is the necessity for automatic renaming of

these variables to avoid naming conflicts if multiple instances of the same effect need

to be linked to a single GPU program. The need for local attributes becomes apparent

in the definition of the lens transform effect: although each lens requires a unique

variable of type “varying” to express the rendered fragment’s position with respect to

the lens coordinate system, a universal effect description of the lens transform should

be sufficient.

3.5.3 Resolving Naming Conflicts

Figure 3.5 showed the effect definition for the lens transform computation. Once

multiple lenses are introduced to the scene, more than one instance of this effect will

be necessary to provide independent lens transforms and fragment positions that are

used for the per-lens in-out tests. However, simply duplicating the code specified in the

effect definition will result in compilation errors as multiple variables with the same

name (in this case vertex wrt lens) are found. We use automatic variable renaming

where necessary to avoid such naming conflicts of shader variables.

In the example, the local attribute vertex wrt lens is automatically renamed

by our system once an instance of the effect is created for a specific lens. This is

52

accomplished by adding the unique identifier of the corresponding lens to its name,

allowing us to reuse local attributes in related effect definitions as they will be renamed

following the same scheme. For example, if both the lens transform effect of Figure

3.5 and the fragment region test effect shown in Figure 3.6 are instanced for a lens

with the unique identifier “2,” the local attribute vertex wrt lens will be renamed to

vertex wrt lens 2 for both effects before compilation and linking.

3.5.4 Shade Trees

Cook (1984) introduced the concept of shade trees to overcome lacking flexibility

in defining light reflection behavior for arbitrary surfaces. While many closed-form

equations exist that may be used to simulate certain materials or lighting effects (e.g.,

copper, wood, or diffuse Lambertian reflection), most of them rely on a rigid set of

input parameters and output values. Often, the single evaluated output is the outgoing

radiance from an infinitesimal point on the surface toward the observer.

Cook showed how much flexibility and artistic expressiveness in defining surface

shading characteristics can be gained by arranging individual shading or lighting effects

into a graph structure and combining partial results using simple operators like multiply

or add. A shade tree is then evaluated for every sampled surface point by traversing its

nodes in postorder and obtaining the reflected surface color as the output of the tree’s

root node.

Cook uses the term appearance parameters for the set of properties that ultimately

determine the observed color (i.e., the light reflection behavior) of a surface. These

53

appearance parameters (which also include basic geometric information like the surface

normal) serve as leafs of the tree. From a mathematical point of view, the presented

shade tree representation is a directed acyclic graph (DAG), as leaf nodes in the graph

may serve as input to multiple shader nodes (e.g., the surface normal is necessary for

the evaluation of many different shading models and therefore has to be connected to

multiple nodes in the graph).

3.5.5 Using Shade Trees for Lens Effect Composition

We use shade trees to define effect signatures for every lens in the system which

fully describe the vertex- and fragment-level effects applied by a particular lens.

We incorporate the lens transform and clipping strategy described in Section 3.3.2

by adding two effects which perform the necessary per-vertex transform and the

subsequent in-out clipping test. See Figure 3.15 for an example of lens signatures and

their composite shade tree representation generated by our system.

Using our conceptual shade tree model, we can easily define rules for composition

of effects. Every lens signature and its respective shade tree inherently define effect

composition as a sequential order of effects: the shade trees in Figure 3.15 each

respectively translate to a sequential order of four effects, beginning with the lens frame

transform and ending with the surface shader effect that computes the final fragment

color.

If lenses are intersected and a composed shader effect tree needs to be generated,

there may only be one final surface shader at the top of the shade tree. A developer

54

Legend

Lens frame transform

Cubic lens in-out test

Spherical lens in-out test

Directional light

Color map

Environment mapping

Surface shader
Lens Signature

a) b)

Figure 3.15: Examples of lens signatures for three lenses applying different effects
are shown in a), while a respective shade tree generated by our system for the lens
intersection region accentuated in gray is illustrated in b).

either writes a universal surface shader that is applied at the end of each individual

lens program (e.g., general Phong shading model) or creates different surface shaders

and the system chooses which one should be applied in the composite case based on

lens order (e.g., Phong shading inside one lens and cartoon-style shading in another).

After the root node has been established as described, the tree is composed by

successively adding the nodes of the remaining lenses’ shade trees from left to right

according to the global lens ordering. Figure 3.15 b) gives the resulting shade tree

for a composition of three lenses with different signatures. Once the desired tree

representation of the composite effect is known, the sequential order of effects can be

established using a postorder traversal of the composed tree. After this transformation

is performed, the sequential effect list is passed to a factory class that generates a GPU

55

program implementing the desired effect chain.

This approach may be used with our single-pass rendering technique as well as

other multi-pass techniques that employ GPU programs for computation of lens effects.

However, only Method I presented in Figure 3.10 is capable of incorporating the full

effect chain generated by our shade tree traversal into the GPU program as it defines

individual branches that each fully describe a composite lens effect. Method II merely

provides fixed-order execution of lens effect computations.

3.6 Results

For better comparability of our performance results, we kept some variables of our

machine and rendering configuration constant throughout tests. These constants are

listed in Table 3.2.

Machine Intel Core2 2.4GHz, 2 GB RAM
Graphics card NVIDIA 9800 GX2
Operating system Windows XP Professional (32-bit)
Rendering viewport resolution 1280x1024 pixels
Rendering options 16x Anisotropic filtering, 16x Antialiasing

Table 3.2: Constant configuration used for all performance tests presented in this work.

3.6.1 Lens-scene Intersection using k-d Trees

We evaluated the performance of the lens-scene intersection necessary to find

geometry in the scene that needs to be rendered using the specialized shader program.

For this purpose, we compared the performance of the rendering system using a naive

linear search intersection technique and the k -d tree intersection test. In both cases,

56

a scene containing a single mesh of 720,000 primitives was rendered from an identical

point of view using the single-pass rendering technique following Method II. We do

not state results obtained using Method I separately, as no difference in performance

was detected for the given cases. All lenses had identical dimensions and applied a

height-based color map to geometry enclosed by the cubic lens volume. Both test

cases employed identical optimization strategies: initial intersection test using an

axis-aligned bounding box; termination of lens-object intersection test after first vertex

(for linear search) or primitive (for k -d tree) was tested “positive”; no repeated lens

intersection tests for geometry that was found to be intersecting any of the considered

lens volumes. The results are given in Table 3.3.

Number of lenses
0 1 2 3 4 5

k -d tree
No interaction 187 169 143 122 110 94
Moving a single lens 169 142 121 110 94

Linear search
No interaction 187 169 145 122 110 93

Moving a single lens
worst 21 18 18 19 20
best 121 120 117 110 93

Table 3.3: Performance results for lens-scene intersection comparing rendering update
rates for different intersection strategies. The update rate is given in frames per second.

As expected, the update rate hardly varies at all between the two strategies for the

“No interaction” case, as no lens-scene intersection is performed. If one or multiple

lenses are introduced to the scene and interactively moved by the user, the additional

overhead introduced by the per-frame intersection test becomes apparent. We state

the best and worst update rates for linear search, as the computational cost of the

intersection varies depending on the position of the lenses with respect to the rendered

57

mesh. As can be seen from the results, the variance in update rate can be as large as

100 frames per second, in this particular case indicating a computational overhead of

41.7 ms for the worst case.

In most cases, the minimal overhead of the k -d tree intersection performed for

each frame could not even be detected. The maximum measured cost of the k -d tree

intersection was 0.07 ms per frame for a scene containing three lenses. Our results

validate the decision to employ k -d trees to achieve fast lens-scene intersection tests.

It should be noted that–for a wide variety of applications–linear search is not an

efficient search technique. However, we chose it for comparison to the k -d tree approach

because an implementation of the linear search technique is readily available in many

scene graph systems (including OpenSceneGraph). In addition, it represents a search

technique with a high variance in computation time, which we wanted to contrast with

the steady computational cost of the k -d tree intersection.

3.6.2 Performance Evaluation of Single-pass Rendering Technique

For the performance evaluation of the single-pass rendering technique presented

in this work, we used two different test scenes. Both test scenes contained a digital

elevation model with 720,000 primitives and 366,000 vertices (scene 1) or 2,883,000

primitives and 1,448,000 vertices (scene 2). The whole dataset was visible inside the

chosen view frustum and all lenses introduced to the scene intersected the mesh.

Identical lens shapes (cube) and applied effects (color map) were used for all lenses in

the scene to allow for comparison of added rendering cost per lens. Scene geometry was

58

Figure 3.16: Example rendering of scene used for performance evaluation. Shown
here is Scene 1 containing three cubic color map lenses. Elevation data is property
of the Shuttle Radar Topography Mission (SRTM), which is headed by the National
Geospatial-Intelligence Agency (NGA) and the National Aeronautics and Space
Administration (NASA).

stored in GPU memory and rendered as a Vertex Buffer Object (VBO). In addition,

a full copy of the scene geometry and a k -d tree representation thereof was stored in

main memory and used by the CPU to perform lens-scene intersection calculations.

Our evaluation only considers fragment-level lens effects; the model shown inside of

all lenses (focus) and outside of lens boundaries (context) is identical for all presented

cases. A performance evaluation of object-level effect rendering was not carried out,

but capabilities and limitations of our approach with respect to object-level clipping

are discussed in Section 3.4.6.

No tiling of the dataset’s geometry was performed to emphasize the good

performance of our algorithm despite the lack of optimized spatial partitioning. We

59

chose a high antialiasing setting to emphasize the cost of additional lenses as each lens

increases the computational complexity per fragment.

Tables 3.4 and 3.5 state the results of our performance evaluation of the single-pass

lens rendering technique (using Method II) and a variation of the multi-pass rendering

technique described by Best & Borst (2008). Contrary to their approach, we do not

employ CSG data structures and operations for the Region Analyzer module, but

use polytopes as described in Section 3.3.1 to approximate volumes of lenses and

their intersections. Instead of using a custom lens-scene intersection technique like

the one mentioned by Best & Borst (2008) for the multi-pass approach, we employ

identical intersection calculations using k -d trees for both approaches. This is done to

emphasize the difference in performance that can be attributed to GPU computations.

As mentioned previously, the dataset was not tiled for either one of the compared

rendering approaches. However, the number of render passes and GPU programs

required for the multi-pass approach is identical to the technique described by Best &

Borst (2008).

In addition to the tabular results, a graphical plot of the rendering update rate for

both scenes is given in Figure 3.17. The results stated for “lens interaction” reflect

the worst performance measured while moving a single lens through the mesh and

thereby creating multiple lens intersection regions. We do not separately state results

for Method I, as the measured performance was equivalent for all cases that included

up to six lenses. The identical performance of both methods is due to a similar

number of per-fragment operations (equal number of in-out tests, equal number of

60

hardware-interpolated floats, equal instructions for individual effect implementations)

performed by the GPU. For more than six lenses, rendering Method I could not be

used, as the GPU program length exceeded the maximum instruction count of the

utilized graphics card.

61

Table 3.4: Performance results for single-pass lens rendering (using Method II).

Number of lenses

0 1 2 3 4 5 6 7 8 9 10

Scene 1

no interaction (fps) 187 169 143 122 110 94 77 65 52 37 20

lens interaction (fps) 169 142 121 110 94 77 65 52 37 20

additional lens cost (ms) 0.57 1.08 1.20 0.89 1.55 2.35 2.4 3.85 7.8 22.97

Scene 2

no interaction (fps) 85 58 47 38 34 29 11 5 4 4 3

lens interaction (fps) 57 47 38 34 29 11 5 4 4 3

additional lens cost (ms) 5.48 4.04 5.04 3.1 5.07 56.43 109.1 50 0 83.33

Table 3.5: Performance results for multi-pass lens rendering.

Number of lenses

0 1 2 3 4 5 6 7 8 9 10

Scene 1

no interaction (fps) 187 88 58 43 33 29 24 21 18 16 14

lens interaction (fps) 88 58 43 33 29 24 21 18 16 14

additional lens cost (ms) 6.02 5.88 6.01 7.05 4.18 7.18 5.95 7.94 6.94 8.93

Scene 2

no interaction (fps) 85 31 18 13 10 8 7 6 5 4 3

lens interaction (fps) 31 18 13 10 8 7 6 5 4 3

additional lens cost (ms) 20.49 23.30 21.37 23.08 25 17.86 23.81 33.33 50 83.33

62

Figure 3.17: Performance plots comparing single-pass and multi-pass rendering approach.

63

No relevant performance differences between Method I and II were measured for

cases supported by both approaches (1-6 lenses). This suggests using Method I for

a relatively small number of lenses being rendered simultaneously, as we can easily

achieve desired clipping behavior for lenses showing different content as described in

Section 3.4.6. As soon as a greater number of lenses (more than six) is required for a

certain application, a trade-off between multi-pass approaches like the one described

by Best & Borst (2008) and our single-pass Method II has to be made: while the

multi-pass approach requires optimized tiling of scene geometry to achieve acceptable

performance for a high number of lenses, our approach may not be able to implement

desired clipping behavior.

For comparison, we implemented a multi-pass rendering approach using the

technique described by Best & Borst (2008). The performance results for rendering

of the same test scenes using this approach are given in Table 3.5. Note that no lens

intersections were created for the sample cases. However, we measured the performance

for both single-pass approaches and no change in update rate was detected when lens

intersections were introduced compared to the results stated in Table 3.4. This is not

surprising, as the number and complexity of fragment computations are independent

of the number of lens intersections. In contrast, Best (2007) gives detailed results

that show how the performance of their multi-pass approach deteriorates with an

increasing number of lens intersections. Also note that for the evaluated cases, we

measured identical performance for the interaction and static scene using the multi-pass

approach. These results highlight the benefit of fast k -d tree intersection tests and the

64

low overhead of the polytope region composition operations.

As expected, our algorithm outperforms the multi-pass rendering approach for

the given test scenes. This is not surprising, as no tiling of the large polygonal

mesh is performed to improve performance of the multi-pass technique. Comparable

performance of the two approaches was only measured for rendering of scene 2 with a

high number of lenses. The slowdown in the update rate apparent for the single-pass

approach is due to the fact that the computational complexity of per-vertex and

per-fragment operations increases with each additional lens as follows:

• Vertex stage: one additional matrix multiplication; and

• Fragment stage: three additional hardware-interpolated floats, one additional

region test, and potentially additional effect computation.

Comparing the additional computational cost introduced by a new lens brought

into the scene shows that for the multi-pass technique, the cost was between four and

five times higher than for the single-pass approach. However, this is only true if the

number of lenses is between one and five. For a high number of lenses, the additional

cost per lens for our approach suddenly increases drastically. Currently, we do not have

a comprehensive explanation for this effect. However, our results show that the effect

appears for a lower number of lenses in the scene 2 test case (six lenses) than for scene

1 (ten lenses). This indicates that the effect might be emphasized if the number of

rendered primitives is higher. In addition, we tested the performance of rendering scene

2 using a lower image resolution (1024x768 pixels) and lower image quality settings

(no anisotropic filtering, lowest possible antialiasing setting). The sudden performance

65

drop could not be reproduced using these settings. This suggests that the number of

fragments–which is considerably higher for our initial test–might have a large impact

on whether the performance drop effect occurs at a certain lens count.

Using scene 1, we achieve 90% of the original “no lens” rendering update rate

after the first lens is introduced to the scene. This number decreases to 68% for the

more complex scene 2. For comparison, the depth peeling technique of Ropinski &

Hinrichs (2004) caused a performance drop to 40% of the initial rendering update after

the introduction of the first lens. Depending on scene complexity, we show that our

technique is able to render four to six intersecting lenses at 40% of the original frame

rate.

3.6.3 Performance Comparison to Rendering Approach of Best & Borst

Best (2007) gives a comprehensive performance evaluation of their multi-pass

rendering approach using a dataset similar to the one used in our tests. However,

Best employed optimized mesh tiling to accentuate the performance benefits of the

presented approach. A direct comparison to their results is difficult due to different

system configuration and datasets used. However, we measured the performance of the

system implementation created by Best, which was also used in the evaluation given in

Borst et al. (2007) and readily available to the author. Again, results were obtained

using the system configuration described in Table 3.2.

A rendering of the test scene used in the evaluation of Best & Borst’s approach

is given in Figure 3.18. A tiling resolution of 1024 was used. The depicted scene

66

Figure 3.18: Example rendering of scene used for performance evaluation of the
rendering approach of Best & Borst. Shown here is the fixed view of the scene
containing three cubic color map lenses. Elevation data is property of the Shuttle
Radar Topography Mission.

contains 2.16 million vertices and was rendered using a fixed viewpoint. In contrast

to our application, the system of Best & Borst uses OpenGL display lists to render

geometry. Our application renders the terrain data of scene 2 using Vertex Buffer

Objects. While the scene and application setup is not identical for both systems, we

find it reasonable to compare the performance results in terms of additional cost per

lens and lens intersection. Therefore, instead of comparing the rendering update rates

of the results to previous numbers, we calculated the additional computational cost

required to complete the rendering of a single frame. Figure 3.19 contrasts the cost

per additional lens and lens intersection region for our approach and the multi-pass

approach of Best & Borst. For completeness, the rendering update rates are given in

Figure 3.20. Scene 2 was used to obtain the performance results for the single-pass

approach.

67

Figure 3.19: Performance plots comparing our single-pass technique and multi-pass rendering approach of Best & Borst
in terms of added cost per additional lens in the scene (a). Higher numbers of lenses are not supported by the multi-pass
implementation used by the author. Plot b) compares results in terms of added cost per lens intersection region in the scene.
A total number of four lenses was used for all intersection cases. Note that in a), plots for the single-pass results overlap for
most values shown.

68

Figure 3.20: Performance plots comparing our single-pass technique and multi-pass rendering approach of Best & Borst
in terms of render update rate. Note that different datasets and system implementations were used. Therefore, a direct
comparison of absolute frame rates is not meaningful, whereas relevant performance trends may still be observed. While
a) shows the impact of additional non-intersecting lenses on the render performance, b) compares results in terms of
performance drop per additional lens intersection region in the scene. A total number of four lenses was used for all
intersection cases. Note that in a), plots for the single-pass results overlap for most values shown.

69

Figure 3.19 a) shows that there is hardly any difference in performance if the

single-pass approach is used and a user interacts with a lens volume compared to the

static lens case. While the additional lens cost is smaller for the static case of the

multi-pass approach (compared to single-pass), the benefit of the single-pass rendering

becomes apparent for the lens interaction case. Here, the additional lens cost steadily

increases (up to 35 ms) for a higher number of lenses if multi-pass rendering is used,

while it oscillates between three and six ms for the single-pass case.

Figure 3.19 b) highlights another performance advantage of our single-pass approach.

While the additional computational cost of lens intersections is very irregular for the

multi-pass case and might be as high as 14 ms if a lens is moved, the performance of

the single-pass rendering is not affected by additional lens intersections at all.

3.6.4 High-level Comparison

We see several advantages of the presented single-pass rendering approach over

comparable rendering techniques:

• supports high number of lenses rendered at interactive update rates;

• hardly any performance drop during lens interaction (move, scale, rotate); and

• no performance penalty due to increased number of lens intersection regions.

Previous rendering techniques experienced a deterioration of rendering performance

once users moved lenses or altered their size. Our results show that this performance

decrease can be overcome using our methods. Neither lens translation nor the

introduction of additional lens intersection regions caused the rendering performance

70

to decrease in our tests.

Our single-pass rendering technique for volumetric lenses in general does not require

the a priori knowledge of intersecting lens volumes in the scene. Therefore, additional

computation on the CPU side for what Best and Borst called “Region Analysis”

and respective techniques using CSG (constructive solid geometry) operations can be

omitted in cases where lenses perform fragment-level effects.

Optimized partitioning of meshes with a high polygon count can potentially

increase the rendering performance of both our single-pass approach and other multi-

pass techniques. Besides the speedup gained by CPU optimizations before rendering

(e.g., view frustum culling), tiling may increase render performance on some GPUs;

Borst et al. (2007) showed that using a higher number of small display lists rather than

a single large display list can result in a substantial performance increase. However,

our approach does not explicitly rely on a mesh partitioning that is optimized for

lens rendering, as the number of times the mesh has to be processed by the graphics

card is minimized. One reason why optimized partitioning of large meshes might

not generally be desired is the computational overhead imposed on the CPU by

creating and maintaining corresponding data structures. This applies in particular

to deformable mesh structures that would require a frequent update of the employed

space partitioning data structures. Our new rendering approach therefore reduces the

dependence on optimized mesh tiling for efficient rendering of composable volumetric

lenses. However, a deforming mesh would also require an update of k -d tree structures

used by our approach for lens-scene intersection tests. Therefore, our technique cannot

71

entirely avoid additional overhead for lens effects applied to deformable meshes. While

a full k -d tree update is generally an expensive operation, Zhou et al. (2008) showed

that per-frame updates of the tree structure are more feasible if the GPU is leveraged

for k -d tree construction. Zhou et al. (2008) report a speedup between three and six

of their GPU algorithm when compared to common k -d tree generation techniques

performed on the CPU.

A hybrid approach that automatically determines whether our single-pass technique

or previous multi-pass approaches should be used may be employed to add the option

of incorporating vertex-level lens effects.

3.6.5 Limitations and Scalability

One obvious limitation of the described rendering technique is the fact that only

effects that can be rendered using a single pass are supported. Several shading

effects have been presented in the past that require identical geometry to be rendered

multiple times using different shader programs or alternating render state settings

(e.g., disabling the depth buffer test in order to achieve glass-like transparency effects).

However, our techniques for effect composition are not tied to single-pass rendering

approaches, but may also be employed for lens effects that are rendered using multiple

passes.

Using our technique, the number of lenses that may be rendered at the same time is

limited by the number of automatically interpolated floating point variables supported

by the employed graphics card. We require three floating point variables per lens to

72

interpolate lensiv, the position of a shaded fragment with respect to the local coordinate

system of lensi.

In addition, the maximum number of fragment program instructions supported by

the graphics card becomes a limiting factor if shader programs are generated using

Method I. As 2n distinct cases for the value of the created region bitmask have to be

considered, the generated GPU program exceeds the maximum instruction count for

a large number n of lenses in the scene. More efficient representations of the desired

clipping behavior may be employed to reduce the complexity of the generated fragment

program in the future.

In general, view frustum culling of lens volumes can be employed to limit the

amount of in-out tests and possible region bitmask cases to a minimum. Unnecessary

tests can be omitted for lenses that are outside of the user’s field of view as no fragments

that will have to be considered for rendering can possibly be affected by them.

We showed that the fast positive intersection test using k -d trees resulted in

stable render update rates for the case of a user interacting with a lens volume that

intersects relevant geometry. However, rendering performance currently decreases

for the following case: the bounding box test used initially for the lens-geometry

intersection test signals a potential intersection and the k -d tree intersection test does

not determine a positive intersection result (compare Figure 3.21). In this case, the

fallback intersection method that potentially tests every primitive of the respective

geometry for membership in the k -DOP bounding volume has to be used. In our

case, a simple linear search is used, which results in an unstable performance decrease

73

Figure 3.21: Example case for which lens-geometry intersection has to be determined
by a fallback method. Shown in red is the axis-aligned bounding box of the geometry,
the green outline shows the extent of the lens volume. For this case, the bounding box
test indicates a potential for intersection, while the line segment/k -d tree intersection
test may not detect an actual intersection. Therefore, a fallback method has to be used
for intersection that ultimately determines the result of the intersection test.

depending on the relative positioning of the geometry and the internal ordering of its

primitives. More efficient search techniques could be employed as fallback method in

order to obtain a more predictable and stable update rate.

3.6.6 Lens Effect Composition

The new composition behavior enables us to create lens effects that alter certain

surface properties (like the diffusely reflected color) without affecting related attributes

(e.g., the surface’s shininess). Using this approach, we can easily generate combinations

of different light reflection behavior for lens intersection regions, e.g., the strong

specular highlights of a marble surface and the subtle highlights of a satin-like fabric

74

Figure 3.22: Example of lens effect composition using marble and fabric shader effect.
Note how the specular highlights of the marble as well as the highlights of the red
fabric at glancing angles are preserved in the lens intersection region. Dragon model is
property of Stanford Computer Graphics Laboratory.

visible only at glancing angles. See Figure 3.22 for a rendering of the described

composite effect.

Using our approach, the user is given the ability to change the visual qualities

of composite effects by simply changing lens order and respective lens blend modes.

Whereas advanced effect composition behavior of multiple lenses might not be widely

required in the context of scientific visualization, we see applications for our technique

in domains such as video game development and CG movie production. Shader artists

in those fields are often required to develop new shader models for realistic appearance

of three-dimensional objects. These shading models typically have to be formulated

in a “technical” shader definition language such as GLSL (real-time rendering) or

RenderMan Shading Language (offline rendering).

75

Our system allows users to generate composite shader effects from a library of basic

effect types without the need for learning the employed shader definition language.

Instead, direct visual evaluation and refinement of the created shading effect inside of

volumetric lens volumes may now be employed to create a desired object appearance.

As the composite effect is generated as GLSL source code by our application, the

created artifact (a shading model expressed in shader definition language) may be

passed on by the artist as before without the need for altering the production process.

3.6.7 Exchange of Techniques between Rendering Approaches

As described in previous sections, we were able to reuse and extend several of

the approaches to lens rendering presented by Best & Borst (2008). Similar to their

system, we employ a Shader Effect Factory that is capable of selectively generating

the required GPU programs for the multi-pass and single-pass rendering techniques.

We extended their work to allow for automatic renaming of variables to avoid naming

collisions and to minimize the effort for writing a reusable shader effect definition. The

concept of using in-out tests evaluated in local lens space was inherited from Best &

Borst (2008); our work shows how test results may be combined into a bitmask to allow

for single-pass rendering of multiple lenses. In addition, we show that in-out tests for

lens volumes may be defined using extruded 2D texture shapes (see Figure 3.7).

The idea of using a single GPU program to consider all possible lens intersection

regions may be used in the rendering approach of Best & Borst (2008) to avoid the

creation of individual GPU programs for each lens intersection region. In this case, the

76

same GPU program may be used to render all regions containing identical geometry.

A uniform variable may be passed to the program to determine which region branch

is to be evaluated for lens effect composition. In addition, vertex-level effects may be

implemented by creating a front-end vertex shader that contains branches for each

possible region similar to the fragment shader pseudocode given in Figure 3.10.

While this approach would result in a simpler interface between CPU and GPU

implementation of lens rendering (single GPU program instead of multiple programs

per object), it would also limit the maximum number of lenses that can be rendered

at the same time using the technique of Best & Borst (2008), as it does with the new

technique.

The lens-scene intersection techniques presented in Section 3.3.1 may be used

together with the rendering approach of Best & Borst (2008) and could potentially

speed up the broad-phase culling process. In addition, using polytopes instead of

CSG objects to represent lens intersection regions may help reduce the CPU overhead

imposed by their approach.

The described techniques for lens effect composition are not exclusive to our

single-pass rendering approach, but may be used in any related lens rendering system

that employs per-fragment evaluation of lens effects. One such example is the rendering

technique of Best & Borst (2008), which can easily be extended to support the described

lens effect composition using shade tree concepts.

77

3.6.8 Scene Graph Integration

The presented rendering techniques may be integrated with any scene graph system

that supports the following mechanisms particular to our approach.

• Lens-scene intersection test (e.g., using bounding volumes and k -d trees);

• Accumulation of render state and geometric transforms required for shallow

copies of intersected scene geometry;

• Abstractions for GPU shader programs and their uniform variables for imple-

mentation of the shader effect factory;

• Access to the view matrix used during draw traversal for updates of eye
lensi

T;

• Extensibility of update traversal to include the setup stages required before lens

rendering (intersection, copying of geometry, GPU shader generation); and

• User interface capabilities for interaction with lens volumes.

Many modern scene graph libraries already provide some of the required data types

and related algorithms or are flexible enough so that missing functionality can easily

be added. For example, OpenSceneGraph supports the generation of k -d trees for

imported meshes, but the visitor class that implements the required polytope/geometry

intersection had to be extended to make use of the fast k -d tree intersection test. Other

classes had to be added but could derive some of their functionality from existing ones,

e.g., a visitor class that accumulates the render state for a given list of scene graph

nodes. Newly developed classes that abstract composite shader effects as well as the

factory class that creates those effects from individual effect definition files had to be

entirely designed and implemented by the author.

78

The required classes may be grouped as follows:

• Widgets and menus for user interaction with lens objects (for transforming and

adjusting individual lenses);

• Factory and composite classes for shader effect generation and composition;

• Scene graph nodes for high-level representation of volumetric lenses (including

visual boundary representation);

• Scene graph analysis class triggered by scene updates (initiates lens-scene

intersection and creates sub scene graphs for lens rendering); and

• Builder, shape, and visitor classes for actual lens-scene intersection calculation

(automatic generation of k -d trees, polytope volume representation, intersection

visitors).

79

Chapter 4

Extending Volumetric Lenses to Spatiotemporal Visualization Tools

4.1 Motivation and Applications

One of the major innovations of interactive tools designed after the Magic Lens

metaphor is the ability to provide an alternative presentation of a user’s spatial

focus region without loss of the surrounding context. It is the author’s belief that

this perceptual concept can also be applied if a temporal dimension is added to the

presented environment. We propose the concept of a spatiotemporal lens tool that

allows users to explore time-varying data through direct manipulation of time in a

spatially constrained area.

Many conceivable scenarios for computer graphics applications and visualization

systems involve a notion of time in addition to the spatial information presented

to a user of the system. These scenarios range from large virtual environments

resembling the “real world” (in which avatars over time create memorable experiences

by interacting with each other) to dynamic physical simulations that are presented

in an abstract fashion to allow for efficient human interpretation. Regardless of the

character of those visualizations, their instantaneous internal state will be determined

by a mechanism modeled after the naturally perceived passage of time.

In contrast to the real world, active manipulation of the time instant that determines

the state of such systems is possible and sometimes essential to their usefulness.

4.1.1 Time Navigation Techniques

Several visualization techniques have been suggested that support the simultaneous

or condensed sequential presentation of imagery ranging over multiple time instants.

Rapid Serial Visual Presentation Techniques (RSVP) represent a prominent class

among these. However, many of these techniques focus on 2D imagery and may not

be generally applicable to 3D graphics applications, where users generally have to rely

on the visual presentation related to a single time instant. Many application designers

choose to expose interface elements for time control to the user that resemble related

functionality for linear media playback (e.g., play, pause, and rewind buttons on video

cassette recorders (VCR)). If the time span of interest is constrained, these controls are

often accompanied by a linear time slider that depicts the current playback position.

Although this approach offers intuitive control over the progression of time as presented

by the visualization system, it is typically limited to controlling a global “clock” that

determines the overall state of the visible environment.

Recently, Wolter et al. (2009) suggested an interesting time navigation technique

for scientific visualization that uses direct manipulation of scene objects to control

time. Their system lets users drag objects along their three-dimensional trajectory,

thereby controlling the overall simulation time. Wolter et al. showed that for certain

applications, this type of time navigation is superior in terms of navigation speed and

user satisfaction to the prevalent time slider technique. However, their approach relies

on the existence of spatial trajectories for scene objects of interest. If an observed

object remains stationary over time (but exhibits, for example, changes in surface

81

properties), this navigation technique is not applicable.

Ryall et al. (2005) introduced the concept of a Temporal Magic Lens that may be

used for a combined temporal and spatial query of video data. The tool described by

the authors serves as a “window in time” and is defined by a region of interest and

a time period of interest. The Temporal Magic Lens then presents a visual summary

of the spatial region over the given time period. Ryall et al. achieve this for their

particular application by blending multiple video frames into a composite image. Their

system allows for control of the stacking order and weighting of individual frames that

are considered in the composition of the presented image.

The Temporal Magic Lens of Ryall et al. is defined in terms of a combined spatial

and temporal query. Whereas the spatial query is equivalent to other “flat” Magic Lens

tools (i.e., the user positions a two-dimensional lens shape over the region of interest),

the temporal query is specified by a user-defined time range. Unfortunately, this

specification limits the applicability of the approach to those visualization techniques

for which an aggregation of multiple time instants in a single representation is available

and desired. While this representation can easily be achieved and interpreted for the

domain of video, the concept of Ryall et al. lacks generality for other visualization

domains.

Recently, Adar et al. (2008) presented an information system that employed a 2D

temporal lens used for visual, structural, and textual queries of archived web content.

Each lens exposes a time slider that allows control of the time used to query and

render its respective web site content. Their Zoetrope system also allows the user

82

to create bind groups of lenses that simultaneously update their time sliders if one

of them is changed by the user. The authors pointed out that users found it easier

to track changes in a small focus region rather than having to scan the entire screen

to detect changes in the observed web site. To the author’s knowledge, the work of

Adar et al. is the only example of lens tools that offer temporal and textual queries in

addition to the common visual and structural filters. Similarly, most published work

on volumetric lenses has focused exclusively on visual (vertex or fragment level) and

structural (object level) filters.

4.1.2 Spatiotemporal Lens Tools

We propose the concept of “spatiotemporal lenses” (or “time warp lenses”) as

versatile visualization tools that combine spatial and temporal queries within user-

defined focus regions. The tool enables users to introduce spatial and temporal focus

regions to create simultaneous views of the visualized data at different time instants.

Analogous to the Magic Lens metaphor, the temporal context may be preserved as the

lenses do not affect global time.

Figure 4.1 gives an example of a typical scenario in which spatiotemporal lenses

may be used to simplify time navigation. Imagine a user studying population density

data that is being rendered inside of a spatial focus region defined by a volumetric

lens. To find prominent local features in the time-varying samples, the user might want

to continuously move the global time back and forth while observing changes in the

visualization. This task is typically separated from the additional scene navigation and

83

1950

1980

+ 1 year

Figure 4.1: Example application for composition of spatiotemporal lenses (constructed).
By combining absolute time referencing with a relative time offset, a user can study
changes in the visualized population density data between 1950 and 1951 as well as
between 1980 and 1981 in different parts of the world by simply moving the respective
lenses. Images are property of NASA–Visible Earth Project.

lens translation necessary to refine the individual’s focus region.

Using our spatiotemporal lens metaphor, we can combine these tasks into a single

translation task. Initially, the user creates a spatiotemporal lens and defines an absolute

time reference (e.g., the year 1950) or a relative time offset (e.g., one year) to be used.

Intersecting the lens with the visualized data now causes the data’s internal time-based

state to be altered for rendering inside of the lens volume. Overlapping a lens with

a fixed time reference of 1950 with a lens applying a relative time offset of one year

results in population data of the year 1951 to be shown inside of the intersection region.

By moving the lenses in and out of the region of interest, the user can easily observe

time-based changes in the data without the need to constantly switch between time

navigation and spatial navigation.

84

The direct manipulation of time using a spatial lens structure may be applied

for developing and testing of hypotheses regarding spatiotemporal correlations in

time-varying data. For example, a scientist interpreting population density maps may

be interested in finding spatial regions with a large annual increase in the measured

density value. To accomplish this task in a visualization system, one would typically

have to switch repetitively between spatial navigation (translation, rotation, scale)

and time navigation (change global time in increments of one year) to alter both the

spatial and temporal focus. Using a spatiotemporal lens, this task can be simplified

to a single spatial manipulation task. If the lens applies a time increment of one year

to an enclosed data fragment, it may be moved through a spatial interest region to

observe any changes in the data that occur over the course of a single year.

In the following paragraphs, we describe potential applications of the presented

tool metaphor to underline the validity and usefulness of our approach.

As high-resolution medical imaging techniques like magnetic resonance imaging

(MRI) are now widely available and affordable, it becomes feasible and desirable for

medical professionals to interpret and compare patient data obtained at different time

instants (e.g., during an extended period of chemotherapy treatment). The visualized

data could be used for monitoring of tumor growth or to observe the body’s response to

medical treatment. While examining the time-varying data, the observer then typically

varies both his spatial and temporal focus continuously (e.g., by first rotating the

regarded 3D model and subsequently moving forward in time to watch its progression).

Multiple spatiotemporal lenses may be used in this context to simultaneously observe

85

and discuss progression at different time instants. (“While it took two months for

metastasis A to disappear, we can see that metastasis B is still apparent after four

months of treatment.”)

The Temporal Magic Lens described by Ryall et al. can be regarded as a special

case of our concept. Instead of rendering a single time instant within the volume of a

spatiotemporal lens, multiple representations obtained at different time instants may

be aggregated and combined into a single representation. Besides its applicability

to the domain of video sequences, this aggregation technique is commonly used in

computer animation systems and is often referred to as “ghosting.” Figure 4.2 shows

an example of how the technique–which is typically applied to whole objects in the

scene hierarchy–may be combined with a spatiotemporal lens to reduce the added

visual complexity of the overall presentation to a minimum.

Another application of the presented technique is the introduction of an indepen-

dently controlled timeline for a time warp lens. If a user wants to observe changes

in a spatial focus region over a certain period of time, the lens may be configured to

automatically create a looped playback of the enclosed region using time constraints

defined by the user. Moving the lens through the scene will allow the user to observe

an animated view of data inside the lens volume. The visual context is preserved and

the scene remains “uncluttered” as the looped animation is only applied to data within

lens boundaries.

Our spatiotemporal lens interface metaphor extends the original Magic Lens

metaphor by providing focus and context in both spatial and temporal dimensions.

86

Figure 4.2: The left image shows a typical use of the ghosting effect in modern
3D animation systems. The right image gives an example of using an aggregating
spatiotemporal lens to achieve the same effect in a user-defined region of interest
without affecting the rest of the scene (constructed). Image generated using Generi
character rig by Silke (2009).

We believe that the tool can provide an intuitive interface for time navigation tasks,

especially if changes in the visualized data over the course of a fixed time span are to

be observed.

4.1.3 Spatiotemporal Lenses in Virtual Environments

In the context of immersive virtual environments, many applications of spatiotem-

poral lenses are imaginable. As suggested by Viega et al., the lenses might serve

as “crystal balls”–windows into time and space. Enabling a user to “step into” a

spatiotemporal lens and use it as a portal would allow users to virtually travel through

space and time.

87

Spatiotemporal lenses can be combined with a concept for wayfinding in virtual

worlds that was presented by Elvins et al. (2001). In their work, three-dimensional

thumbnails called worldlets serve as easily recognizable landmarks in large virtual

environments. Worldlets may be created by a user within the environment as a spatial

snapshot of his immediate surroundings. Once created, individual worldlets typically

provide enough spatial context to use them for future wayfinding within the virtual

world.

The idea of using self-contained fragments of the virtual environment for navigation

and wayfinding readily extends to spatiotemporal snapshots, which allow users to

capture their immediate environment at a certain point in time. If the appearance

of the virtual world is affected by the passage of time (e.g., simulation of different

environmental conditions like sunlight, weather, traffic, etc.), the ability to capture

the user’s surrounding at the time of visit might be a useful addition to the worldlets

technique. The temporal context of such a snapshot may help users to identify and

remember a previously visited location (e.g., the user first visited the place of interest

during night and heavy rainfall) despite the fact that it might look significantly different

once the user returns to it.

4.2 Design and Implementation

4.2.1 Absolute and Relative Time Offset

We identify two distinct types of time warp effects applied by our lenses: relative

and absolute time offsets. A time warp lens with the absolute time tabs will show a

88

rendering of the visualized data at time tabs within its boundaries, while the unaffected

parts of the scene are shown at global time tglobal. Using a relative time offset of trel

for a time warp lens will take into account the global time and add the corresponding

time offset to this value.

We use the following notation to describe composition behavior of time warp

lenses below: Rabs < tabs > denotes a time warp region of absolute time ti, while

Rrel < trel > is a time warp region with relative time offset trel. The absolute time

inside of Rrel < trel > depends on the global time tglobal and is computed as the sum

tglobal + trel.

The time warp effects described above only incorporate individual, non-intersecting

lenses. We describe composition behavior of time warp lenses in Section 4.2.3.

4.2.2 Interface Design

The interface design of a spatiotemporal lens has to unambiguously communicate

the time instant shown within its boundaries. Otherwise, users are unable to rely on

their interpretation of the additional information presented within the lens volume.

For many applications, a textual description of the depicted time will be sufficient.

Depending on the temporal granularity of the available data, certain time formats

or units will be more suitable than others. In the case of a physical simulation that

uses very small time steps to update its results, the description might have to reflect

time differences as small as a microsecond. For a user interpreting population density

data that is collected annually, stating only the year in which the data were collected

89

+ 1 year - 2 hrs + 0:00:01:00

1989 12:37 pm 0:02:55:11Absolute time reference

Relative time reference

Figure 4.3: Conceptual user interface for spatiotemporal lenses using either absolute or
relative time offset to be applied to intersected objects. Different time formats may be
used depending on the domain of the visualization and the temporal granularity of the
observed data.

might be sufficient. If the concept were integrated into a character animation system,

established time code formats like SMPTE may be the best choice to help domain

experts in understanding the functionality of the tool. Figure 4.3 shows several

conceptual examples of user interface designs for a spatiotemporal lens that reflect the

discussed considerations.

Depending on the chosen time format, suitable user interface elements should be

chosen to let the user define the time offset of a particular lens. For example, a calendar

tool may be used to pick a month or an individual day of the year as absolute time if

the temporal granularity of the visualized data matches this. Figure 4.4 gives several

examples of how user interface elements can be used to communicate the time warp

effects created by multiple lenses.

90

Figure 4.4: Conceptual user interface for different spatiotemporal lenses. The
lens labeled “1980” applies an absolute time to the rendered population data
(Rabs < 1980 >). As it is intersected with a lens applying a relative time offset
(Rrel < 10 >), the intersection region Rabs < 1990 > is created. The lens in the bottom
left shows a special case of absolute time: instead of a single fixed time instant, it uses
a time range and continuously updates its time to create a looped animation of the
population data between the years 1940 and 2000.

4.2.3 Lens Composition

The necessity of designing composition behavior for volumetric lenses arises

naturally if the user is allowed to spatially overlap multiple lenses. Therefore, we

considered the existence of semantically meaningful composition of lenses that operate

in both the spatial and temporal dimension. As described in Chapter 3, using shade

tree concepts for the composition of surface shading effects offers a flexible and powerful

design to create a large variety of visual effects. However, the composition of temporal

lenses has not been considered previously. Due to the lack of previous research known to

91

us, we present a first attempt at a design for meaningful composition of spatiotemporal

lenses.

While users might find it harder to intuitively predict and interpret composition

behavior for spatiotemporal lenses, we believe that their composition can be meaningful

and aid in the task of time navigation. Especially the composition of an absolute time

and a relative time offset may be used to easily compare changes over a fixed period

of time for different spatial or temporal references. An example of how this concept

can reduce the complexity of required time navigation to a simple translation task

involving multiple spatiotemporal lenses is given in Figure 4.1.

Also, the composition of time warp lenses and other 3D lens types (e.g., lighting,

clipping, visual filtering) is supported by our technique. As described for the

composition of visual effects, we let the user establish lens order by interacting with

different lens volumes. Depending on their order, we define the composition behavior

of multiple time lenses as follows.

Rabs < t1 > ∩∗ Rabs < t2 > = Rabs < t2 >

Rabs < t1 > ∩∗ Rrel < t2 > = Rabs < t1 + t2 >

Rrel < t1 > ∩∗ Rabs < t2 > = Rabs < t2 >

Rrel < t1 > ∩∗ Rrel < t2 > = Rrel < t1 + t2 >

The right-hand operand of the intersection operations denotes the lens region that was

more recently interacted with and that is therefore closer to the front of the ordered

list of lenses. As can be seen from the equations, absolute time references overwrite

92

previous time changes, while relative time offsets are added to the existing time. As

stated before, it may be necessary to communicate the semantics of lens composition

through additional user interface elements. Figure 4.4 gives suggestion of how this

could be achieved in a visualization scenario by introducing additional annotating text

elements.

In addition to time warp lenses that apply a fixed relative or absolute time (offset),

one can think of scenarios in which a user might want to create a time lens that warps

the time inside of its boundaries to midnight (or any other time of day). Alternatively,

a lens may warp the time used for visualization of intersected objects to the next full

hour. Both cases can not be modeled (or composed) using a fixed relative time offset

or absolute time only.

However, both described cases can be implemented by introducing semantics and

intersection rules for the new time warp type. In some cases, the introduction of

additional composite time warp types might be required to create the desired time

warp effect. We exemplify the possibility of extending the class of time warp regions

by a lens type that sets the time inside of its boundaries to the next full hour.

For the following examples, we assume that time values t are given in minutes and

the “origin” t = 0 can be classified as a “full hour.” Let Rfullhour < ti > be the new

time warp region, where ti is used as a relative time offset for region composition. A

top-level lens region of this type would therefore be written as Rfullhour < 0 >. A

93

possible definition of the intersection operation for the new class is given below.

Rabs < t1 > ∩∗ Rfullhour < t2 > = Rabs < t3 >, t3 ≤ t1 + t2 + 59 ∧ t3%60 = 0

Rfullhour < t1 > ∩∗ Rabs < t2 > = Rabs < t2 >

Rrel < t1 > ∩∗ Rfullhour < t2 > = Rfullhour < t1 + t2 >

Rfullhour < t1 > ∩∗ Rrel < t2 > = Rfullhour < t1 + t2 >

Note that the results of the last two lines, which only differ in the order of region

operands, are identical. However, a composition of a “full hour” lens followed by

a relative time offset lens should first add the number of minutes missing to the

next full hour and subsequently add the relative time offset. To support this case, a

composite “helper” region would need to be constructed that supports this behavior.

Consequently, semantics and a set of intersection rules would have to be created for

this region type, too.

As seen in the example, the complexity of implementing consistent composition

behavior of spatiotemporal lenses rises substantially if more sophisticated time warp

effects are required. For the described case, a trade-off has to be made between

creating a full set of composition rules for all involved time warp regions and (partially)

abandoning the lens-order based semantics for composition of time warp effects.

Alternatively, composite spatiotemporal lens behaviors could be represented as a

chain of time warp effects with each element applying a specific operation to an input

time description to produce a resulting time value (e.g., adjusting the given input time

to the next full hour). In this case, composite effect chains would be evaluated to an

94

absolute time value after spatial intersection regions have been determined.

4.2.4 Rendering

For best rendering performance, it is desirable to render a scene containing

spatiotemporal lenses in a single render pass. However, if scene geometry is transformed

or its hierarchical structure changed over time, this is not generally possible. Figure

4.5 illustrates a typical case in which scene geometry needs to be rendered multiple

times to create a correct visual result inside of a spatiotemporal lens. However, we

can still employ the techniques described earlier to optimize rendering performance

by minimizing the number of times a geometry element has to be processed by the

graphics hardware.

Before a scene containing spatiotemporal lenses may be rendered, all unique time

stamps apparent inside of lens volumes and their intersection regions need to be

identified. The resulting list of time stamps is then used to iteratively update the

rendered scene graph to respective time instants. Only after the update can we

correctly compute the scene objects that intersect the lens volumes, as the intersection

result may differ due to time-based changes in position, size, shape, etc. of relevant

objects in the scene. For each time instant, lens-scene intersection is performed as

described in Section 3.3.1 to identify geometry being affected by lenses, and prepare it

for rendering using one of our dynamically generated GPU programs.

Applying the above rules for intersection of multiple spatiotemporal lens regions,

we employ a “region subdivision” algorithm (see Figure 4.6) to identify all unique, non-

95

t=0

t+2

t=6t=3 t=3

Figure 4.5: Example scene illustrating the need for handling time warping as object-
level effect. On the left, a time composition of a scene containing a single animated
sphere is shown. While the solid rendering of the sphere depicts its position at time
t = 3, the non-opaque spheres show its position at previous and successive time steps.
On the right, a conceptual rendering of the same scene at time instant t = 3 is shown.
In addition, the scene now contains a spatiotemporal lens that renders the scene at
time t = 3 + 2 = 5 inside its boundaries. As the sphere has moved and parts of it
are visible inside and outside of the lens volume, its visual representations have to be
treated as two distinct scene objects (compare Section 3.4.1). The depicted lens effect
therefore has to be categorized as object-level effect.

overlapping regions created as combinations of lens volumes. The region subtraction

operator used in the algorithm affects only the region’s bounding volume and lens

clipping behavior; time offsets are not altered due to subtraction. The obtained list of

regions is then used to extract all unique time instants that are to be shown inside of

the lens (intersection) volumes.

Figure 4.7 presents a high-level pseudocode summary of the steps required to render

a complete scene containing time warp lenses. The algorithm is simplified as it only

shows the rendering of lenses sharing a single scene graph S at multiple time-based

96

Input : Rin: list of n top-level regions defined by the volume descriptions of
the n lenses in the scene; Rin

i denotes the i-th element of the list
Result: Rout: a complete list of unique, non-congruent, non-overlapping regions

created as combinations of Rin’s elements
Data: Rm denotes a specific region, while Rn represents a denumerable list of

regions of which Rn
m is the m-th element. An empty list is denoted by ∅

and R∅ represents an empty region, i.e., its spatial extent is 0
Operators: List operations: \ – subtract, ∪ – append.

Region operations: ∩∗ – intersect, −∗ – subtract

Rout ← ∅
foreach Rin

i in Rin do

Rcurrent ← Rin
i

Rtemp ← Rout

Rout ← ∅
foreach R

temp
i in Rtemp do

Rα ← Rcurrent ∩
∗ R

temp
i

if Rα 6= R∅ then

Rout ← Rout ∪ {Rtemp
i −∗ Rcurrent, Rα}

Rcurrent ← Rcurrent −
∗ R

temp
i

else

Rout ← Rout ∪ {Rtemp
i }

Rout ← Rout ∪ {Rcurrent}

Figure 4.6: Region subdivision algorithm used to identify all non-congruent,
non-overlapping regions from a list of lens volumes.

states S(ti). In a full implementation, the algorithm has to be performed multiple

times for all distinct content sub graphs Si used for lenses in the scene.

Our single-pass rendering technique can be employed to assure that each geometry

element in Si(tj) that intersects multiple regions needs to be processed by the graphics

pipeline only once. In some cases, the number of geometry elements to be rendered can

be decreased further. For the example shown in Figure 4.4, the geometry inside of all

spatiotemporal lenses is identical, only the texture map used for surface shading varies

between lenses. Therefore, complete rendering of the scene could be achieved using a

97

S ← scene graph to be rendered inside of lenses
L← create regions from ordered list of lenses
R← region subdivision (L)
T ← extract list of unique time stamps from R

foreach t ∈ T do
establish S(t)
foreach r ∈ R : warpedT ime(r) = t do

intersect r with S(t)
foreach intersecting scene object o do

add copy of o to S

apply GPU program to copy of o

establish S(tglobal)
render S

Figure 4.7: Algorithm for rendering of a scene graph structure containing
spatiotemporal lenses.

single geometry pass of the mesh used for the earth’s shape and a single GPU program

modeled after Method II.

A combination of “regular” volumetric lens rendering and the described time

warp lenses is straightforward. By simply representing each volumetric lens as a

spatiotemporal lens with an offset of Rrel < 0 >, we can use the presented rendering

techniques to support both types of lenses. This makes it easy to integrate visual lens

filters that work uniformly when the respective lens is intersected with a spatiotemporal

lens or other volumetric lenses. For example, imagine a lens that highlights all sample

values in a population map that are above a certain threshold level. Using our rendering

approach, we can apply this effect uniformly to any intersected object regardless of

whether the object’s time instant was previously altered by a time warp lens.

98

4.3 Results

While we are convinced of the usefulness of tools similar to the spatiotemporal

lenses introduced in this paper, a formal user evaluation will be necessary to test for a

positive effect of our tool metaphor on task performance. An evaluation should focus

on tasks that require frequent and effective time navigation. Also, many extensions

of the technique are possible. For example. the time offset of several lenses could be

linked together to allow the investigation of time-delayed effects in a dataset. Adar

et al. (2008) showed how this mechanism could be used in the context of 2D lenses;

further exploration of the potential of combining multiple timelines in 3D visualizations

is required to show its general applicability.

99

Chapter 5

Conclusion and Closing Remarks

5.1 Conclusion

We present an efficient single-pass technique for rendering of composite volumetric

lens effects on the object and fragment level. Our approach decreases the dependence

on optimized tiling of high-resolution meshes that is imposed by other multi-pass

rendering algorithms. Real-time visualizations that cannot afford to maintain a mesh

partitioning optimized for lens rendering (e.g., due to a deformable mesh structure)

will benefit from our single-pass technique.

While the above is true for fragment-level effects, we show that our approach is

limited with respect to its ability to provide correct clipping behavior for object-level

effects involving a large number of lenses. However, in contrast to earlier approaches,

the performance of our technique does not decrease as lenses are moved or intersected.

We expect that details of the presented rendering technique may be improved in the

future. As described earlier, further optimizations for certain visualization needs may

be combined with our technique. For example, view frustum culling of lens volumes

can be used to minimize the complexity of generated GPU programs and therefore the

per-frame computational complexity.

We show that complex surface shading effects may be combined efficiently for

real-time rendering and can be used as dynamic lens effects. This allows the creation

of interactive previews of future surface shading/material property changes to a certain

object. As more sophisticated rendering effects can be computed at interactive frame

rates today, our technique enables users to preview different shading effects side by side

applied to partial regions of a 3D object. This technique can be used for the creation

of composite shading effects by artists to decrease the time spent on finding the desired

effect that can then be applied to the whole mesh.

We imagine a variety of future additions to the user interface of the described

tools. One such example is the application of the toolglass metaphor introduced along

with the Magic Lens tool by Bier et al. (1993). Using a toolglass attached to the

non-dominant hand may be a beneficial addition to a VR application. For example,

the toolglass may be used to easily choose point colors while laying down points onto a

topological surface rendered inside of a volumetric lens. Alternatively, it may be used

to help in selecting a desired shader effect for a volumetric lens by providing a preview

of the effect on the surface of the toolglass.

We present a focus and context time navigation technique for real-time visualization

systems that builds on the Magic Lens metaphor. We state details on an efficient

implementation of the tool using our previously described rendering techniques. While

our work presents the semantic and computational fundamentals of the spatiotemporal

lens metaphor, more work is necessary to evaluate the general usefulness of the

approach and to identify concrete application scenarios. Several challenges arise with

the composition of spatiotemporal lenses that have to be addressed by future work.

Examples include the question of how to avoid ambiguity in communicating the selected

time instant per lens for general applications and the effective design of a user interface

that gives consideration to the added complexity of the tool.

101

5.2 Closing Remarks

The presented research is a continuation of previous work on volumetric lenses

by Christopher M. Best, Christoph W. Borst, and Vijay B. Baiyya conducted at the

Virtual Reality Laboratory at The Center for Advanced Computer Studies (CACS),

University of Louisiana at Lafayette. Former research assistants working for Christoph

W. Borst in the Virtual Reality Laboratory developed a visualization system that

included rendering support for composable volumetric lenses.

The lenses were used commonly in the interpretation of topological datasets by Gary

L. Kinsland, who is an Endowed Professor of Geology at the University of Louisiana at

Lafayette. This ongoing collaboration allowed the author to discuss and evaluate many

of the presented innovations with a user who actively utilized the volumetric lenses on

a regular basis.

Results of the geological interpretation of LIDAR data using volumetric lenses

were published at the Annual Convention of the Gulf Coast Association of Geological

Societies in 2008 (Kinsland et al., 2008). A research demo highlighting the use of

composable volumetric lenses for surface exploration was presented by the author at

an international conference on Virtual Reality (Tiesel et al., 2009). A poster abstract

introducing the single-pass rendering technique described in Chapter 3 was accepted

for publication at an international conference on Computer Graphics (Tiesel & Borst,

2009). In addition, a paper that proposes spatiotemporal lenses for time navigation

was submitted to an international conference on visualization.

All results described in this work are based on a self-contained implementation of

102

the respective algorithms performed by the author. All figures containing renderings of

volumetric lenses (except for Figure 3.18) were generated exclusively using the author’s

own implementation. The bunny, dragon, and buddha model used to create some of the

images in this text are property of Stanford University Computer Graphics Laboratory.

Other data sources are identified in figure captions.

103

Bibliography

Adar, E., Dontcheva, M., Fogarty, J., & Weld, D. S. (2008). Zoetrope: interacting with

the ephemeral web. UIST ’08: Proceedings of the 21st annual ACM symposium on

User interface software and technology , 239–248.

Benford, S., & Fahlén, L. (1993). A spatial model of interaction in large virtual

environments. ECSCW’93: Proceedings of the third conference on European

Conference on Computer-Supported Cooperative Work , 109–124.

Best, C. M. (2007). A Complete Solution for Composable Volumetric Lenses. Master’s

thesis, University of Louisiana at Lafayette.

Best, C. M., & Borst, C. W. (2008). New rendering approach for composable volumetric

lenses. Proceedings of the IEEE Virtual Reality Conference 2008 , 189–192.

Bier, E. A., Stone, M. C., Pier, K., Buxton, W., & DeRose, T. D. (1993). Toolglass

and Magic Lenses: the see-through interface. SIGGRAPH ’93: Proceedings of the

20th annual conference on Computer graphics and interactive techniques , 73–80.

Borst, C. W., Baiyya, V. B., Best, C. M., & Kinsland, G. (2007). Volumetric windows:

application to interpretation of scientific data, shader-based rendering method, and

performance evaluation. Proceedings of the International Conference on Computer

Graphics and Virtual Reality 2007 , 72–80.

Cook, R. L. (1984). Shade trees. SIGGRAPH Computer Graphics, 18 (3), 223–231.

Craig, J. J. (1989). Introduction to Robotics. Mechanics and Control. Second Edition.

Reading, MA: Addison-Wesley.

Elvins, T. T., Nadeau, D. R., Schul, R., & Kirsh, D. (2001). Worldlets: 3-D

thumbnails for wayfinding in large virtual worlds. Presence: Teleoperators and

Virtual Environments, 10 (6), 565–582.

Fuhrmann, A., & Gröller, E. (1998). Real-time techniques for 3D flow visualization.

VIS ’98: Proceedings of the conference on Visualization ’98 , 305–312.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M. (1994). Design Patterns.

Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley

Professional.

Itoh, M., Ohigashi, M., & Tanaka, Y. (2006). WorldMirror and WorldBottle:

Components for interaction between multiple spaces in a 3D virtual environment.

Proceedings of the Tenth International Conference on Information Visualization,

53–61.

Kinsland, G. L., Borst, C. W., Tiesel, J.-P., & Das, K. (2008). Interpretation and

mapping in 3-D virtual reality of pleistocene Red River distributaries on the prairie

surface near Lafayette, Louisiana. Gulf Coast Association of Geological Societies

Transactions, vol. 58, 525–533.

Looser, J. (2007). AR Magic Lenses: Addressing the Challenge of Focus and Context

in Augmented Reality . Doctoral dissertation, University of Canterbury.

Looser, J., Billinghurst, M., & Cockburn, A. (2004). Through the looking glass: the

use of lenses as an interface tool for augmented reality interfaces. GRAPHITE ’04:

Proceedings of the 2nd international conference on Computer graphics and interactive

techniques in Australasia and South East Asia, 204–211.

Looser, J., Billinghurst, M., Grasset, R., & Cockburn, A. (2007). An evaluation of

105

virtual lenses for object selection in augmented reality. GRAPHITE ’07: Proceedings

of the 5th international conference on Computer graphics and interactive techniques

in Australia and Southeast Asia, 203–210.

McCool, M., Du Toit, S., Popa, T., Chan, B., & Moule, K. (2004). Shader algebra.

Proceedings of the ACM SIGGRAPH 2004 Conference, 787–795.

Mendez, E., Kalkofen, D., & Schmalstieg, D. (2006). Interactive context-driven

visualization tools for augmented reality. Proceedings of the IEEE/ACM International

Symposium on Mixed and Augmented Reality 2006 , 209–218.

Pixar (2009). RenderMan - Developers Corner - RI Specs. Retrieved February 23,

2009, from https://renderman.pixar.com/products/rispec/.

Plate, J., Holtkaemper, T., & Froehlich, B. (2007). A flexible multi-volume shader

framework for arbitrarily intersecting multi-resolution datasets. IEEE Transactions

on Visualization and Computer Graphics, 13 (6), 1584–1591.

Ropinski, T., & Hinrichs, K. (2004). Real-time rendering of 3D magic lenses having

arbitrary convex shapes. Journal of the International Winter School of Computer

Graphics (WSCG04), 379–386.

Ryall, K., Li, Q., & Esenther, A. (2005). Temporal magic lens: Combined spatial

and temporal query and presentation. Proceedings of the IFIP TC13 International

Conference on Human-Computer Interaction (INTERACT), 809–822.

Silke, A. (2009). Generi - free Maya rig. Retrieved February 23, 2009, from

http://www.andrewsilke.com/generi rig/generi rig.html.

Strauss, P. S., & Carey, R. (1992). An object-oriented 3D graphics toolkit. SIGGRAPH

106

Computer Graphics, 26 (2), 341–349.

Tiesel, J.-P., & Borst, C. W. (2009). Single-pass rendering of composable volumetric

lens effects. SIGGRAPH ’09: ACM SIGGRAPH 2009 posters, 1.

Tiesel, J.-P., Borst, C. W., Das, K., Kinsland, G. L., Best, C. M., & Baiyya, V. B.

(2009). Composable volumetric lenses for surface exploration. Proceedings of IEEE

Virtual Reality 2009 , 291–292.

Trapp, M., Glander, T., Buchholz, H., & Döllner, J. (2008). 3D generalization lenses

for interactive focus + context visualization of virtual city models. Proceedings of

the 12th International Conference on Information Visualisation, IV 2008 , 356–361.

Viega, J., Conway, M. J., Williams, G., & Pausch, R. (1996). 3D Magic Lenses. UIST

’96: Proceedings of the 9th annual ACM symposium on User interface software and

technology , 51–58.

Wang, L., Zhao, Y., Mueller, K., & Kaufman, A. E. (2005). The magic volume lens:

An interactive focus+context technique for volume rendering. Proceedings of IEEE

Visualization 2005 , 367–374.

Wolter, M., Hentschel, B., Tedjo-Palczynski, I., & Kuhlen, T. (2009). A direct

manipulation interface for time navigation in scientific visualizations. Proceedings of

IEEE Symposium on 3D User Interfaces 2009 , 11–18.

Zhou, K., Hou, Q., Wang, R., & Guo, B. (2008). Real-time kd-tree construction on

graphics hardware. ACM Transactions on Graphics, 27 (5), 1–11.

107

Tiesel, Jan-Phillip. Bachelor of Science, University of Bremen, Summer 2006;
Master of Science, University of Louisiana at Lafayette, Spring 2009

Major: Computer Science
Title of Thesis: Composable Visual and Temporal Lens Effects in a Scene Graph-

based Visualization System
Thesis Director: Dr. Christoph W. Borst
Pages in Thesis: 123; Words in Abstract: 212

ABSTRACT

Volumetric lenses have been studied as tools for interactive visualization in recent years.

However, their potential to be used for intuitive time navigation by extending their

underlying focus and context metaphor to the temporal domain has not been addressed

before. This work introduces new rendering techniques and proposes “spatiotemporal

lenses” as versatile visualization tools that combine spatial and temporal queries within

user-defined focus regions. In order to establish the techniques required for an efficient

implementation of the new tool, we state design principles and describe the integration

of volumetric lens rendering into a scene graph-based visualization system. Our work

introduces new techniques for single-pass rendering of composable volumetric lenses as

well as a flexible framework for lens effect composition.

We evaluate the computational performance and visual quality of our rendering

approaches, compare our results to previous research, and provide suggestions on future

implementations of visualization systems incorporating volumetric lens rendering. Our

results show that the presented algorithms can reduce the dependence on optimized

scene partitioning imposed by earlier approaches. In contrast to previous research,

our technique achieves consistent rendering performance for user interaction and lens

intersection cases.

We present semantic and computational fundamentals of the spatiotemporal lens

metaphor, suggest composition behavior for time lenses, and present application

scenarios for their usage.

BIOGRAPHICAL SKETCH

Jan-Phillip Tiesel was born in Herford, Germany, on February 20, 1982, to Karin

and Horst Tiesel. Following the completion of a study abroad program at Indiana

University Purdue University Indianapolis (IUPUI) in 2005, he obtained the degree

Bachelor of Science in Digital Media from the University of Bremen, Germany, in the

year of 2006. After working as a self-employed multimedia developer for one year,

he went on to pursue his Master of Science in Computer Science at the University of

Louisiana at Lafayette. He was initiated as a member of the Phi Kappa Phi honor

society in 2009.

