
Real-time Character Animation Techniques –
A Comprehensive Survey

CMPS 619 – Advanced Topics in Computer Science
Spring 2008, Technical Report

Jan-Phillip Tiesel
University of Louisiana at Lafayette
jpt4246@cacs.louisiana.edu

Character animation isn’t the fact that an ob-
ject looks like a character or has a face or hands.
Character animation is when an object moves
like it is alive, when it looks like it is thinking
and all of its movements are generated by its
own thought process. It is the change of shape
that shows that a character is thinking. It is the
thinking that gives the illusion of life.
[Lasseter 1994]

1. HISTORY AND MOTIVATION
Character animation was first recognized as an art form by
cartoonist Winsor McCay in the early twentieth century. He
showed that it was possible to convey emotions of an artifi-
cial character through change in shape with his hand-drawn
short film ”Gertie the dinosaur”which was published in 1917
[Johnston and Thomas 1981, p. 22]. About 20 years later,
the art form was taken to a new level by the ground-breaking
work of artists at the Walt Disney Animation Studios. Their
impact on the field of character animation can hardly be
overestimated.

While increasing the range of artistic expression through
the exploration of unique animation principles, they were
also continuously advancing the technology that brought
animated characters to the screen. Some examples of their
technological innovations include the multiplane camera, use
of xerography for drawing transfer, or advanced composi-
tion techniques to combine live-action film and hand-drawn
animation. Those improvements helped to streamline the
process of animated filmmaking and led to the release of the
first full-length animated film in 1937.

The fact that the visual appearance of an artificial charac-
ter is often only of minor importance for its believability
and range of expressions is widely recognized among artists
working in animation. The basic principles of animation,

Figure 1: Luxo Jr., an example of conveying emotion
and personality despite the use of simple geometry.
Source: [Lasseter 1987]

developed by Disney animators in the early 1930s, can be
applied to a wide range of shapes in order to create the il-
lusion of a thinking character driving the deformation and
change in shape of an artificial object. If done properly, ac-
tions and emotions of virtual characters can be easily read
by a general audience almost regardless of the complexity
of the animated shape. A good example is Luxo Jr., the
first short film released by Pixar (see Figure 1). Its director
– John Lasseter – was one of the first ”traditional” anima-
tors to show that most of the principles of animation can be
applied to computer animation, as well [Lasseter 1987].

An extensive amount of research in psychology of perception
proved a strong sensitivity of human perception to motion
clues provided by living organisms. It was shown that hu-
man subjects – and even some animals – are able to spon-
taneously organize a sparse number of those clues into the
percept of a moving figure. Johansson used point light dis-
plays showing a small number of moving markers attached
to distinct features of the human body (typically joints) to
demonstrate the general ability of recognizing common mo-
tion patterns despite a very reduced type of presentation
[Johansson 1973].

In psychology, these types of patterns are commonly re-
ferred to as biological motion and it has been shown that
subjects can even recognize gender, certain emotional states



or known individuals exclusively from point light displays
which withhold the presentation of the person’s shape from
the subjects. Johansson gave an initial analytical model for
describing biological motion and it was later shown by Troje
that certain patterns can be synthesized while maintaining
their perceptive quality [Troje 2002].

Both researchers and artists working in the field of computer
animation have to take into account this sensitivity of hu-
man perception to a variety of organic motion patterns when
trying to create convincing artificial characters. Ever after
the release of the first full-length feature film entirely gen-
erated by artists using computer animation in 1995, there
has been a growing demand for sophisticated computer an-
imated characters – not only in the movie industry, but
also for use in video games, virtual avatar applications, etc.
Alongside, an increasing need developed for sophisticated
tools and algorithms that aid computer animators in mak-
ing the transfer of an imaginative motion sequence into a
computational model more intuitive and efficient.

With the availability of sophisticated graphics hardware,
many animation techniques that have been suggested are
now applicable for real-time applications running at inter-
active frame rates. The artistic potential of the medium of
animation paired with the ongoing technical advances will
make believable virtual characters much more likely in the
future. Documented applications in the field of Virtual Re-
ality making use of character animation created by profes-
sional animators are rare. One exception is the Aladdin VR
attraction created by Walt Disney Imagineering for one of
their theme parks [Pausch et al. 1996].

This document attempts to provide an overview of the most
influential and commonly used real-time character anima-
tion techniques – with an emphasis on the animation of ar-
ticulated structures.

1.1 Approaches
The major goal of most surface deformation algorithms is
to minimize the effort and complexity needed to represent a
certain character pose while providing realistic deformation
behavior for a large variety of configurations.

Even though other approaches exist and are used for certain
applications, most character animation is created using key-
frame systems. While the term key-frame was coined in the
traditional animation industry, it has been generalized in
the field of computer animation to apply to any variable for
which certain key values are defined and any intermediate
values can be computed according to some computational
procedure [Parent 2002, p. 116]. The individual key-frames
are typically created by an artist although this is not neces-
sary in general – any computational model can potentially
serve as a provider of key-frames to ”bake” its results to
a less computationally expensive key-frame discretization.
The key-frames and their interpolated in-betweens are then
used as input to the respective deformation algorithm.

Physical simulation models exist that provide highly realistic
deformation results by employing a complex model of bones,
muscles, and tendons and solving the interaction of all its
elements with the deformed surface for every frame of the

animation. Generally, those models are the preferred choice
when rendering at interactive rates is not necessary and very
realistic results are required (e.g. in the movie industry).
While the computational complexity of such models is too
high for most real-time animation applications, they can still
indirectly benefit from the results produced by this method
(see 3.4).

Procedural methods have been used for automatic genera-
tion of character animation sequences in computer games
and crowd simulations, but are used primarily to blend ex-
isting motion sequences in a realistic way and are usually an
extension to the underlying deformation algorithm.

2. FACIAL ANIMATION
The blend shape face model takes a collection of n surface
meshes of identical topology (e.g. defined by vertices of a
polygon mesh or control points of a parameterized surface)
and linearly blends their individual attributes. A resulting
vertex position v is calculated as

v =
nX

i=1

wivi

with wi being the weight of blend shape i and vi being
the position of the corresponding vertex or control point in
the ith blend shape. Similarly, additional attributes – such
as texture coordinates or surface normal – are constructed
using a linear combination of the attribute values of the
respective blend shapes. Generally, the range of blended
shapes is restricted to be the convex hull of the n blend
shapes:

nX
i=1

wi = 1, wi ≥ 0 ∀ i

After the blend shapes are sculpted, semantically meaning-
ful controls are defined that allow the animator to actuate
certain features or expressions defined by one or a combina-
tion of several blend shapes (e.g. raising an eyebrow). Key-
frames are created by the artist for each individual control
over the course of an animated sequence. The configuration
of all controls establishes the weights wi needed to deter-
mine the deformed surface. An example of a few typical
blend shapes used to constitute facial expressions is given in
Figure 2.

In order to create the desired range of facial expressions for a
digital character, the number of blend shapes that have to be
created by an artist may increase drastically. To create the
facial animation for the character Gollum in the feature film
Lord of the Rings: The Two Towers, a total number of 675
blend shapes was defined [Fordham 2003]. One reason for
this high number of necessary blend shape lays in one of the
major limitations of the approach: the interpolated motion
is not always smooth. Although the interpolation of key-
frames driving the blend shape controls can be of arbitrary
continuity, the interpolated motion path of a vertex is only
piecewise linear. One commonly used approach to hide the
linear nature of this technique is sculpting additional key
shapes for specific transitions between facial expressions.

With an increasing number of blend shapes, the key-framed



Figure 2: An example of different blend shapes for facial expressions

controls exposed to the animator that define the weights
used in the blending equation also become more complex
and harder to interpret semantically. Joshi et al. suggested
an attempt at automating the process of defining such blend
shape controls through a physically-motivated segmentation
algorithm [Joshi et al. 2003].

A thorough overview over influential facial animation re-
search and an outlook of the field can be found in [Radovan
and Pretorius 2006].

3. ANIMATION OF ARTICULATED
STRUCTURES

While shape blending is the preferred way to create an al-
most unlimited range of detailed facial expressions, the ap-
proach is infeasible for animating the whole body of a charac-
ter. The growth in the number of blend shapes and controls
necessary to compose all desired body poses is unacceptable
both in terms of creation time and usability. For this rea-
son, most algorithms used to deform surfaces representing a
character’s body are based on the assumption of an underly-
ing articulated structure – consisting of rigid or almost rigid
bones connected by joints – which drives the deformation.

3.1 Skeleton-subspace deformation
This commonly used algorithm is also referred to as Linear
Blend Skinning, Vertex Blending, or Enveloping in the lit-
erature. For simplicity, the algorithm will be referred to as
SSD for the remainder of this text.

3.1.1 Assumptions
SSD is based on the assumption that the deformation of
surface points can be fully described by the pose of an un-
derlying articulated structure. This structure is typically
modeled to resemble an imaginary skeleton which drives the
deformation of the surface. The full skeleton pose is then
defined by a description of the hierarchical structure of its
bones and the local transformations of its joints.

The second assumption that is inherent to the SSD algo-
rithm – which is in turn one of its major drawbacks – is that
the deformation of any control point or vertex on the skinned
surface can be described as a linear combination of the trans-
forms of its influencing joints. While this observation seems
valid, it turns out to pose several severe restrictions on the
expressiveness of the surface deformation (details in 3.1.3).

3.1.2 Algorithm

While it can operate on control points of other surface rep-
resentations – such as a NURBS surface –, we will use the
notion of vertices of a polygonal mesh being transformed
by the SSD algorithm. Also, we assume that 4x4 matrices
are used to represent transformations; different representa-
tions have been used to represent skeleton configuration (e.g.
[Kavan et al. 2007]), but are not instrumental in the under-
standing of SSD.

SSD introduces the rest pose of a character’s body to define
the geometric information of all mesh vertices with respect
to a certain skeleton configuration. Typically, the T-pose
(a character standing on its feet with its arms extended) is
used to define the rest pose and ”bind” the skin to the bones
of the skeleton.

The following notation will be used: the position of a par-
ticular vertex in its rest pose is denoted as v̂. The skeleton
consists of b individual bones; each of the bones is defined by
its constant transformation matrix in the rest pose model

bone T̂i

and its current transform model

bone Ti, which may vary over time.
Both model

bone T̂i and model

bone Ti are found by traversing the bone hi-
erarchy from the skeleton’s root node and accumulating the
individual bone transforms. Let 1 ≤ i ≤ b.

The displacement of a vertex when moving rigidly with bone
i is then constructed as follows: the vertex position has to
be transformed from model space to bone space. This is
done by employing the inverse of the rest pose matrix of the
bone model

bone T̂i:

v̂i = model

bone T̂
−1

i v̂ = bone

modelT̂iv̂

The varying transformation of bone i – describing the al-
tered skeletal configuration – is then applied to the result to
transform the vertex back into the model coordinate frame:

vi = model

bone Tiv̂i = model

bone Ti
bone

modelT̂iv̂

This equation is the basis for SSD; in fact, the above equa-
tion is the trivial case for the SSD algorithm, which describes
the position v of a particular vertex as a linear combination
of several different vi.

During the ”binding” stage, an additional step is added:
scalar weights for the influence of each bone on the dis-
placement of a single vertex are calculated. This is typi-
cally done automatically based on different attributes of the
vertex, such as distance to the bone. Also, a maximum num-
ber of bones influencing the position of a vertex are usually
defined to minimize computational cost. A maximum num-
ber of four influential bones per vertex is often used and



seems to be a sufficient choice for many applications. The
calculated weights can be edited by the artist (e.g. by paint-
ing a weight map corresponding to a single bone onto the
character’s surface). Techniques to automatically determine
optimal bone weights according to a set of ”ground truth”
training examples were presented by several authors in the
past [Merry et al. 2006, Mohr and Gleicher 2003, Wang and
Phillips 2002].

The weighted sum of displaced the gives the blended vertex
position that partially defines the deformed surface:

v =

bX
i=1

wiTiT̂i

−1

v̂ (1)

where
Pb

i=1
wi = 1. For bones that do not have an influ-

ence on the displacement of a particular vertex, the assigned
weight would be 0. In practice, the vertex position is usu-
ally calculated as follows (assuming a maximum number of
4 influential joints):

v =

4X
i=1

wiTbi
T̂bi

−1

v̂

where bi is the index of the ith bone influencing the displace-

ment of the vertex. As T̂i

−1

and v̂ are constant, their prod-
uct can be precalculated to reduce the cost of the per-vertex
displacement calculation. The description of the algorithm
is based on [Jacka et al. 2007].

The computation can be made more efficient by providing
the transformation matrices for all bones and the per-vertex
bone indices and weights to a custom vertex shader that is
running on the GPU. The required per-vertex computations
can easily be parallelized by modern GPUs without addi-
tional implementation effort. The varying bone transforma-
tions can be passed to the vertex shader by using texture
memory for storage and shader access. The bone indices
and weights are per-vertex attributes and can be assembled
along with geometric information in a vertex array that pro-
vides the necessary information to the shading unit.

In order to create an animated sequence of a moving charac-
ter’s body, the artist would define the binding parameters as
described above and continuously create key-frames that de-
fine Ti(t) – the transformation matrix of bone i with respect
to the model (body) coordinate frame at time t.

3.1.3 Problems and limitations of SSD
Despite its straight-forward implementation and good real-
time performance, there are several shortcomings and lim-
itations that may have a negative impact on the quality
of the resulting deformation. The most significant artifact
shows when joints are rotated to extreme angles: the de-
formed surface ”suffers” a loss of volume that results in very
unnatural looking deformations. This problem is referred to
as collapsing joints for extreme bending angles and called
candy-wrapper effect for twisting operations (see Figure 3).

These drawbacks are due to the linear nature of the algo-
rithm: the linear interpolation of the transformation ma-
trices is not equivalent to the linear interpolation of their
rotations. The interpolated transformation matrix becomes

Figure 3: Collapsing joints (left) and candy-wrapper
effect (right) showing loss of volume. Source: [Jacka
et al. 2007]

Figure 4: The resulting vertex is a linear inter-
polation of two rigidly displaced vertices. Source:
[Merry et al. 2006]

degenerate at extreme angles and collapses the skin geome-
try [Mohr and Gleicher 2003]. This relationship can easyly
be observed in Figure 4.

Inherently, the deformations that the algorithm produces are
linear combinations of the bone transformations. Therefore,
typical skin deformation effects – such as muscle bulging –
that are not directly proportional to bone rotation, cannot
be modeled using SSD.

Despite its inherent failure to produce deformations of con-
sistent quality, the algorithm is supported by most com-
mercial animation software and remains popular in video
games and virtual environments – mainly due to its supe-
rior real-time performance. Numerous techniques have been
suggested to overcome the visual artifacts of SSD. Some of
the most common approaches are reviewed in the following
sections.

3.2 Augmenting the SSD model
In order to cope with the volume loss problems apparent
in the SSD algorithm, [Wang and Phillips 2002] expand the
weighted blending of bone transformations (Equation (1))
applied to a vertex by replacing the single scalar value wi.
Instead, they introduce a weight matrix which is a combina-
tion of the bone transformation matrix and its inverse rest
pose matrix – substituted here as Mi = TiT̂i

−1

– and an
increased number of weights:

v =
bX

i=1

wiTiT̂i

−1

v̂ =
bX

i=1

wiMiv̂



v =

bX
i=1

0BB� wi,11mi,11 wi,12mi,12 wi,13mi,13 wi,14mi,14

wi,21mi,21 wi,22mi,22 wi,23mi,23 wi,24mi,24

wi,31mi,31 wi,32mi,32 wi,33mi,33 wi,34mi,34

0 0 0 1

b

1CCA v̂

By adding additional weights, the components of v can now
be influenced independently by any component of a bone’s
transformation matrix. While this gives the animator a lot
more flexibility in order to overcome volume loss artifacts, it
also drastically increases the complexity of defining proper
weight factors for every vertex. Instead of one weight per
bone for every vertex of the mesh, now 12 weights per bone
per vertex have to be determined in order to profit from
the added flexibility. Wang and Phillips report that Multi-
Weight Enveloping introduces greater geometrical error in
their test cases than SSD – an observation which the authors
blame on overfitting during the training process which was
employed to generate the bone weights.

Animation space [Merry et al. 2006] is based on the idea of
combining the vertex attributes v̂ (position) and wi (bone
weight) into a single attribute in order to incorporate the
blending process into a simple matrix-vector multiplication.
Combining the weight, inverse rest-pose matrix, and vertex
into a single vector, we can write

v =
bX

i=1

Tipi,

with pi = wiT̂i

−1

v̂. The sum can be rearranged as a matrix-
vector product:

v = (T1T2 . . . Tb)

0BB� p
1

p
2

. . .

pb

1CCA = Tp

This increases the number of variable weights per bone to
the four components of the pi vector. Using the Animation
Space algorithm, it is also not viable anymore to determine
those weights manually. Typically, a training set of exam-
ple shapes and their respective skeleton poses are used to
determine the weights that satisfy certain optimization con-
straints.

One option for the generation of realistic example shapes is
to employ a deformation model that is too complex for real-
time evaluation – such as a physical simulation modeling
the interaction of bones, muscles, and tendons with the sur-
rounding skin tissue. If the creation of a sufficient number of
example shapes is not a feasible option, both Multi-Weight
Enveloping and [Merry et al. 2006] are not adequate replace-
ments of the SSD technique.

An overview and quality comparison of SSD, Animation
Space and Multi-Weight Enveloping is given in [Jacka et al.
2007]. The authors conclude from their findings that Ani-
mation Space consistently outperforms the other two algo-
rithms with respect to both objective and subjective quality
measures. However, the significance of their results is de-
batable as they fail to provide information on the generative
technique of the ”ground truth”deformed surfaces that were
used for objective quality comparisons.

It has been suggested to replace the 4x4 matrix represen-

tation of a concatenated transform for an individual bone
coordinate frame with a dual quaternion representation [Ka-
van et al. 2007]. While this model is able to overcome some
of the limitations of SSD and generates reliable blending
of rotations, it also cannot produce realistic muscle bulging
or dynamic effects that are not directly related to the rigid
transformations represented by the dual quaternions.

3.3 Correctional models for SSD
Presented in this section are techniques that use SSD as
the underlying deformation algorithm but employ additional
methods to correct for the errors and artifacts introduced by
the SSD algorithm.

[Mohr and Gleicher 2003] attempt to correct errors intro-
duced by SSD by identifying critical deformation regions
within the mesh and creating additional joints in the exist-
ing skeleton. The influences and transformations of the new
joints are optimized to minimize volume loss and to create
surface effects that can’t be achieved with the previous joint
configuration. For example, additional joints are added to
create muscle bulges by scaling nearby vertices according to
the rotation of an adjacent joint.

[Lewis et al. 2000] published their influential work on the
Pose Space Deformation (PSD) technique, which lets the
user interactively correct vertex positions on the deformed
surface. This is repeated for poses that exhibit the typical
SSD deformation artifacts. Once the user has ”tweaked” the
mesh deformation for several poses, the algorithm computes
correctional shapes as a function of skeleton pose, blends
them using a radial basis function and applies the result
to the SSD deformation. Therefore, PSD can be seen as
a combination of SSD and linear shape blending. [T. Rhee
2006] demonstrated how PSD can be efficiently implemented
using the GPU.

[Kry et al. 2002] introduce the EigenSkin construct and
present a complementary algorithm to SSD that has a sim-
ilar approach to correcting SSD errors as PSD. However,
rather than storing large displacement fields for user-defined
key poses and then interpolating between them at runtime,
as in PSD, EigenSkin converts vertex displacements into
”eigendisplacements” with much smaller dimensions using
principal component analysis (PCA) in order to decrease the
cost for real-time shape synthesis. The eigendisplacement
basis functions do not represent correctional fields for the
entire surface, but are optimized for local domains learned
from joint influences. Therefore, the storage requirements of
the EigenSkin technique are much lower compared to PSD.
The authors show that the algorithm greatly benefits from
implementation on programmable graphics hardware.

[Sloan et al. 2001] represent deformations in an abstract
space whose dimensions describe semantically meaningful
properties of the desired shape (e.g. gender, age, or specifics
about skeleton configuration like amount of bend at an el-
bow). After the artist tags example shapes with a set of
adjectives (which in turn define the abstract space), the al-
gorithm uses radial basis and linear interpolation techniques
to generate new shapes on-the-fly and thereby enables the
user to blend between abstract shape attributes over time.



Figure 5: The illustration depicts a typical defor-
mation that SSD cannot capture: most of the fore-
arm rotates about the same axis and with the same
amount as the bone, while parts of the bicep ro-
tate about different axes and with different amounts.
Source: [Wang et al. 2007]

3.4 Replacement for SSD in sight?
A promising approach to replace SSD with a similarly flexi-
ble but less error-prone technique was presented recently by
[Wang et al. 2007]. The authors suggest to replace the SSD
model with a new paradigm which still allows for the appli-
cation of complementary methods such as those described
in 3.3.

Their technique extracts sequences of bone rotations and tri-
angle deformation gradients from example skeletal poses and
corresponding example meshes (e.g. created using a physical
simulation model). After employing regression models for
rotation and scale/shear, this information is used to form a
deformation gradient predictor. For real-time deformation,
the deformation gradient predictions are pieced together us-
ing Poisson mesh reconstruction.

The results shown by the authors are very promising; the
technique is capable of reliably avoiding SSD artifacts (even
those that are still apparent in the EigenSkin and PSD meth-
ods). Combined with the fact that the algorithm shows good
real-time performance (worst-case performance about half as
fast as SSD) might render the method a potential candidate
to replace the long-serving SSD algorithm.

3.5 Other approaches
One example of a more ”exotic” character animation tech-
niques is the use of artificial neural networks to learn proper
deformation of a character skin from a given set of example
shapes paired with their respective skeleton configuration
[Guo and Wong 2004]. The deformation can be transfered to
similar characters without a need for repeating the learning
process. In contrast to approaches that require the genera-
tion and storage of a radial basis function per example shape
(like Pose Space Deformation, EigenSkin, Shape by exam-
ple), the neuroEnveloping algorithm takes more time and
memory during the fitting stage with an increasing number
of examples, but has constant computational cost for syn-
thesizing new shapes.

Instead of trying to find a skinning algorithm that consis-
tently creates realistic deformations for any type of surface
material, [Forstmann et al. 2007] suggest to define reusable
deformation styles for different types of material. Their al-
gorithm – which allows for fast GPU evaluation – determines
the deformation behavior of a surface based on radial scale
textures which can be interactively created and edited by an
artist. Once optimized to resemble the deformation behav-
ior of a certain class of surface materials, the scale textures
can be applied to any existing geometry.

[James and Twigg 2005] present a technique that creates
mesh deformation sequences without the necessity of a pre-
defined skeleton hierarchy. By analyzing triangle rotation
sequences of the example meshes, a bone hierarchy and re-
spective influences on the surface vertices are fitted to the
character. The resulting model is capable of producing re-
alistic deformations at very high frame rates even for scenes
with several thousand animated characters. The authors
also show how it can be used for integrating a character
undergoing complex mesh deformations into a physical sim-
ulation.

The vast majority of research on real-time character ani-
mation techniques focuses on creating models that designed
to be used by experts – mostly computer science profes-
sionals or professional computer animators. In this context,
the work of [Baran and Popović 2007] is remarkable as it
presents an animation framework that is targeted at non-
professionals and novice users. It allows automatic embed-
ding of an optimized skeleton into a user-defined character
mesh and employs existing motion data to drive the defor-
mation of the now animated character.

4. REFERENCES
Baran, I. and Popović, J. 2007. Automatic rigging
and animation of 3d characters. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 papers. ACM, New York, NY,
USA, 72.

Fordham, J. 2003. Middle earth strikes back.
Cinefex 92, 71–142.

Forstmann, S., Ohya, J., Krohn-Grimberghe, A.,
and McDougall, R. 2007. Deformation styles for
spline-based skeletal animation. In SCA ’07: Proceedings
of the 2007 ACM SIGGRAPH/Eurographics symposium
on Computer animation. Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 141–150.

Guo, Z. and Wong, K. C. 2004. Neuroenveloping: A
transferable character skin deformation technique. In PG
’04: Proceedings of the Computer Graphics and
Applications, 12th Pacific Conference. IEEE Computer
Society, Washington, DC, USA, 77–86.

Jacka, D., Reid, A., Merry, B., and Gain, J. 2007.
A comparison of linear skinning techniques for character
animation. In AFRIGRAPH ’07: Proceedings of the 5th
international conference on Computer graphics, virtual
reality, visualisation and interaction in Africa. ACM,
New York, NY, USA, 177–186.

James, D. L. and Twigg, C. D. 2005. Skinning mesh
animations. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Papers. ACM, New York, NY, USA, 399–407.

Johansson, G. 1973. Visual perception of biological



motion and a model for its analysis. Perception &
Psychophysics, 201–211.

Johnston, O. and Thomas, F. 1981. The Illusion of
Life. Disney Animation., 1st ed. ed. Abbeville Press,
New York.

Joshi, P., Tien, W. C., Desbrun, M., and Pighin, F.

2003. Learning controls for blend shape based realistic
facial animation. In SCA ’03: Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on
Computer animation. Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 187–192.

Kavan, L., Collins, S., Žára, J., and O’Sullivan, C.

2007. Skinning with dual quaternions. In I3D ’07:
Proceedings of the 2007 symposium on Interactive 3D
graphics and games. ACM, New York, NY, USA, 39–46.

Kry, P. G., James, D. L., and Pai, D. K. 2002.
Eigenskin: real time large deformation character
skinning in hardware. In SCA ’02: Proceedings of the
2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation. ACM, New York, NY, USA,
153–159.

Lasseter, J. 1987. Principles of traditional animation
applied to 3d computer animation. In SIGGRAPH ’87:
Proceedings of the 14th annual conference on Computer
graphics and interactive techniques. ACM, New York,
NY, USA, 35–44.

Lasseter, J. 1994. Principles of animation: Tricks to
animating characters with a computer. Course notes
from SIGGRAPH 1994, ”Animation Tricks”. Available at
http://www.siggraph.org/education/materials/

HyperGraph/animation/character_animation/

principles/lasseter_s94.htm. Accessed 26 May 2008.

Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose
space deformation: a unified approach to shape
interpolation and skeleton-driven deformation. In
SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive
techniques. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 165–172.

Merry, B., Marais, P., and Gain, J. 2006. Animation
space: A truly linear framework for character animation.
ACM Trans. Graph. 25, 4, 1400–1423.

Mohr, A. and Gleicher, M. 2003. Building efficient,
accurate character skins from examples. ACM Trans.
Graph. 22, 3, 562–568.

Parent, R. 2002. Computer Animation: Algorithms and
Techniques, 2nd ed. ed. Morgan Kaufmann Publishers,
San Francisco.

Pausch, R., Snoddy, J., Taylor, R., Watson, S.,
and Haseltine, E. 1996. Disney’s aladdin: first steps
toward storytelling in virtual reality. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques. ACM, New York,
NY, USA, 193–203.

Radovan, M. and Pretorius, L. 2006. Facial
animation in a nutshell: past, present and future. In
SAICSIT ’06: Proceedings of the 2006 annual research
conference of the South African institute of computer
scientists and information technologists on IT research
in developing countries. South African Institute for
Computer Scientists and Information Technologists,
Somerset West, South Africa, 71–79.

Sloan, P.-P. J., Charles F. Rose, I., and Cohen,

M. F. 2001. Shape by example. In I3D ’01: Proceedings
of the 2001 symposium on Interactive 3D graphics.
ACM, New York, NY, USA, 135–143.

T. Rhee, J.P. Lewis, U. N. 2006. Real-time weighted
pose-space deformation on the gpu. Computer Graphics
Forum. Proceedings of Eurographics 2006 25, 3, 439–448.

Troje, N. F. 2002. Decomposing biological motion: A
framework for analysis and synthesis of human gait
patterns. Journal of Vision 2, 5, 371–387.

Wang, R. Y., Pulli, K., and Popović, J. 2007.
Real-time enveloping with rotational regression. ACM
Trans. Graph. 26, 3, 73.

Wang, X. C. and Phillips, C. 2002. Multi-weight
enveloping: least-squares approximation techniques for
skin animation. In SCA ’02: Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on
Computer animation. ACM, New York, NY, USA,
129–138.


