
A Virtual Environment for Review and Annotation of
Character Animation

Project Report
CMPS 615 – Virtual Reality, Spring 2008

Jan-Phillip Tiesel
University of Louisiana at Lafayette
jpt4246@cacs.louisiana.edu

ABSTRACT
This text is a description of a course project conducted be-
tween January and May 2005 summarizing related work and
implementation details.

1. MOTIVATION
In the movie industry, the term dailies refers to the daily
review of recently filmed footage by members of the produc-
tion crew. In the production pipeline of a CG movie, dailies
commonly refers to the process of reviewing and critiquing
the work completed by different departments involved in the
filmmaking process. They are used by the movie’s director
to refine and steer individual departments’ efforts, ensure
that the film remains on-vision and that the overall film-
making process stays on schedule [7].

Typically, the daily work completed by the character ani-
mation department is given special attention and thorough
review as the motion of a CG character is critical in the
illusion of life that is potentially perceived by the viewer
[8]. The review of an animation sequence generally consists
of repetitively watching and analyzing a pre-rendered video
sequence (usually created with a much simpler lighting and
rendering model than the one used for final rendering) and
providing feedback to the artist. Often, a lot of attention
has to be given to details like facial expressions, proper ap-
plication of animation principles [9], or synchronization of
lip movements and respective voice track.

Today, fast graphics hardware and established algorithms
allow for the rendering of high-quality animations in real
time. Presenting virtual characters’ animation sequences in
a virtual environment is not only a viable option, but might
provide more insight into the quality and believability of the
artistic expression conveyed through the character’s motion.
Comparing the way that artistic character animation – cre-
ated with a stationary viewer in mind – is perceived in a VR

system might also result in more knowledge on how virtual
reality can be used more appropriately as a medium used for
storytelling. As character animation has become ubiquitous
in the entertainment industry – ranging from video games
to commercials and feature films – evaluating its potential
for VR applications seems like a logical step to me in oder
to take on the ”exciting challenge [of][...] learning what to
do with the medium” [12].

2. RELATED WORK
2.1 Animation in Virtual Environments
While character animation has been employed successfully
in commercial VR systems for some time (e.g. Disney’s
Aladdin VR system 1996 [12]), little published research is
available on animation topics specific to virtual reality. An
extensive amount of publications exists on the underlying al-
gorithms and techniques used for computer animation (see
2.2) but little insight has been gained on the differences and
uniqueness of VR as a storytelling medium using expressive
and compelling characters.

Approaches to populate virtual environments with emotional
agents exist, but are still in its infancy [11]. Other systems
employ virtual characters (avatars) for specific learning tasks
or in order to induce a certain emotional state in the user
(e.g. [16]). Generally speaking, most research does not take
into account the importance of a character’s physical motion
even when avatars are supposed to convey complex behav-
iors and emotional states. While the sophisticated creation
of animation that serves complex communicative purposes
has been studied extensively for traditional media (e.g. [8],
[17]), the interaction of VR and animation – both being
highly appealing types of media – has not been studied in
depth.

General questions that should be raised include:

• Does ’better’ character animation performed in a VE
lead to increased perception of presence / mental im-
mersion?

• Can the review of character animation in VR be a
valuable tool in the evaluation of believable character
animation?

2.2 General character animation techniques
While many approaches exist for creating procedural anima-
tion or using dynamic simulations for producing interesting
motion, most character animation for movies, video games,
and other media is created by artists using keyframe anima-
tion systems. With this approach, the artist has full control
over the character’s configuration in every frame of an ani-
mation while tradeoffs and more time-efficient compromises
can be made (e.g. automatic interpolation between frames,
using keyframes to control an IK simulation).

Two main approaches have been used extensively in the past
to give an animator control over the deformation of a mesh of
vertices: Vertex Blending [4] and Shape Interpolation tech-
niques. Shape interpolation algorithms take into account
several base meshes of identical topology that were created
by the artist. It exposes control to a number of blending pa-
rameters which let the artist control the influences of each
base mesh on the target mesh at any given time. The target
mesh is created repeatedly by interpolating vertex positions
of the employed base meshes using the defined blending pa-
rameters. While the basic algorithm is quite simple and has
several restrictions (e.g. identical mesh topology for all base
meshes), it was shown to be a powerful technique for cre-
ating subtle animation effects with full control over details.
This is the reason why it is used widely for facial animation,
where blend shapes are defined for a variety of emotional
expressions and vocal sounds.

Vertex Blending (also referred to as Vertex Skinning [18]
or Skeleton Subspace Deformation) is another interpolation
technique which builds on the assumption of an underlying
imaginary skeleton within the character that defines the de-
formation of certain mesh parts and as a whole constitutes
the configuration of the character’s body. In general, char-
acter models employing this approach are harder to control
precisely than those using shape interpolation but allow an-
imators to develop body posture quickly and block out the
extreme poses of the character before his motions are re-
fined further. This process resembles the stages of creating
traditional cel animation and allows for much faster results
and broad reusability of the underlying skeletal deformation
models (commonly referred to as character rigs in the in-
dustry). [10] describes both algorithms in more detail and
points out some common problems and limitations of the
approaches which are beyond the scope of this text.

3. SYSTEM OVERVIEW
• Ability to load scenes including animated characters

(+ synchronized voice audio track)

• Animation playback and real-time scene rendering

• UI allowing for intuitive and precise playback control
(pause, rewind, reverse)

• UI allowing the user to leave spoken annotations

4. IMPLEMENTATION
4.1 Hardware

• Display: active stereo projection system

• Tracker: IS-900 hybrid tracking system, used to track
position of head interaction device

• Sound: headset for playback and recording of voice
annotations

• Interaction: IS-900 wand

4.2 Asset exchange format
One of the main challenges in order to import initial datasets
into the growing application framework was to find and in-
tegrate a data exchange format that allows for export of
complex scene information (containing geometry, materials,
joint hierarchies and their respective bindings, animation
curves, etc.) from an available software application capa-
ble of creating keyframed character animation. As I have
worked extensively with Autodesk Maya in the past, I de-
cided to look for a data format which would export the re-
quired data from Maya software into a format accessible
through a high-level file abstraction layer.

The COLLADA digital asset exchange format [6] provides
an open, well-documented scheme which allows exchanging
a large variety of digital assets used commonly in CG appli-
cations and video games. In addition, the company Feeling
Software provides an export tool for Autodesk Maya as well
as an open-source library for C++ providing high-level ab-
stractions of the underlying asset data (FCollada [14]). The
actual scene file is stored in one XML file; access to the
encapsulated objects was established using the FCollada li-
brary.

4.3 Toolkits & libraries
In order to shift the focus of the software development pro-
cess towards intuitive interaction techniques and robust con-
trol over the complex hierarchical structure within the an-
imated scene, I decided to use a variety of freely available
software toolkits and libraries that provide functionality re-
quired for the system specifications.

• VR Juggler toolkit [15]

VR Juggler 2.2 was used to simplify access to hard-
ware (tracker, interaction devices) and to guaran-
tee cross-platform compatibility of the employed
graphics rendering routines using OpenGL. Con-
figuration files were created for the specific hard-
ware configuration in the VR lab

• Sonix (part of VR Juggler suite)

Provides a high-level interface for sound playback that
can be used with different underlying sound APIs
like OpenAL or Audiere

• OpenAL Cross-Platform 3D Audio library [3]

As Sonix does not provide functionality to capture
audio samples from an input device, OpenAL was
used to capture voice annotations and write them
to a WAV file

• FCollada (by Feeling Software)

see 4.2

• FreeType library [2]

FreeType 2.3.5 was used to create OpenGL textures
containing anti-aliased text characters from True-
Type font files. These were then rendered on sim-
ple quad geometry using OpenGL display list calls

4.4 Class hierarchy
In order to take advantage of the high-level abstraction of
scene assets used in the FCollada library, I also tried to in-
corporate the idea of creating high-level abstractions of the
underlying semantic objects and patterns into the overall
software design. This resulted in a collection of classes that
hide their underlying complexity and make the implemen-
tation of the rendering and interaction behavior inside the
methods called repetitively by the VR Juggler main kernel
loop clearly structured and comprehensible. As an overview
of all classes created for the project (42 total) is beyond the
scope of this text, two code snippets (Figure 1 and 2) are in-
cluded to clarify the advantages of the described approach.
For further details refer to the actual source code provided
in digital form with this document.

While the FCollada library provided functionality for load-
ing and accessing objects within a data file, it did not provide
any implementation of scene graph operations, rendering or
vertex blending functionality. Based on my knowledge of
computer graphics and scene graph design, I implemented
all functionality employing the data provided by the FCol-
lada from scratch.

void CApplication::draw()
{

glClear(GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
glPushMatrix();

informationConsole->render();
virtualHand->render();

glMultMatrixf(virtualUniverseTransform.mData);
scene->render();

glPopMatrix();
}

Figure 1: Main render loop showing high-level ac-
cess to visual scene objects

Microsoft’s Visual Studio 2005 C++ compiler was used to
create the executable application which has been developed
and tested under Microsoft Windows, but can be compiled
cross-platform due to the operating system independent im-
plementation of its components.

4.5 Vertex blending algorithm
As the basic vertex blending algorithm that was implemented
for this project requires several per-vertex computations,
it is highly suitable for optimization using custom vertex
shaders that run on the GPU. The per-vertex computations
are not interdependent, allowing for fast parallel computa-
tion exploiting the GPU architecture. The general approach
is as follows:

1. Store complete per-vertex information in a vertex ar-
ray that can be transferred permanently to GPU mem-

// check whether any existing annotation is currently selected
CAnnotation* selectedAnnotation = scene->getSelectedAnnotation();
if (selectedAnnotation != 0)
{

// play recorded sound annotation
selectedAnnotation->startSoundPlayback();
informationConsole->pushMessage("Start playing recorded

annotation message...", 2.0f);
// and set current time to the annotation timer
scenePlaybackControl->setCurrentTime(

selectedAnnotation->getTime());
}
else
{

// Add new annotation
currentAnnotation =

new CAnnotation(scenePlaybackControl->getCurrentTime());
Matrix44f VU_wrt_Scene, World_wrt_VU;
gmtl::invertFull(VU_wrt_Scene, scene->getTransform());
gmtl::invertFull(World_wrt_VU, virtualUniverseTransform);

currentAnnotation->setTransform(
VU_wrt_Scene * World_wrt_VU * pointerTransform);

scene->addAnnotation(currentAnnotation);
interactionMode = ADD_ANNOTATION;
informationConsole->pushMessage("Hold trigger and move

wand to position annotation.");
}

Figure 2: Code snippet showing high-level access to
scene structure

ory using a VBO (vertex buffer object). The per-
vertex information contains

• initial (bind pose) position

• initial (bind pose) normal

• number of joints influencing this vertex

• array of joint IDs referring to influential joints

• array of weights per influential joint

2. Store topology / connectivity information about the
mesh as a VBO (typically set of indexed primitives)

3. Calculate the world transforms of scene graph nodes
representing the skeleton joints (typically depending
on animation curve(s))

4. Make transforms available to the vertex shader (typi-
cally using uniform matrix variables)

5. Execute OpenGL call which renders the mesh using
our custom vertex shader

6. Continue with step 3.

See Figure 3 for an abbreviated implementation of the vertex
shader program (not shown: lighting calculation).

This method was successfully used to render simple real-time
animated objects within the application, but it has an in-
herent restriction regarding the number of uniform variables
available to store the updated joint transforms. This puts
a constraint on the maximum number of joints in the scene
that can be used without altering our previously described
approach.

Limitations differ depending on graphics hardware, so that I
also implemented a more general solution used in the current

//
// Additional vertex attributes
//
attribute float numJoints;
attribute vec4 jointID;
attribute vec4 jointWeight;

//
// Uniform application data
//
uniform mat4 jointTransform[32];

//
// Varying variables shared with fragment shader
//

void main() {
int i, id, numJointsInteger;
vec3 normal;

numJointsInteger = int(numJoints);
if (numJointsInteger > 0) {
vec4 normalIn = vec4(gl_Normal, 0.0);
vec4 normalOut = vec4(0.0, 0.0, 0.0, 0.0);
vec4 position = vec4(0.0, 0.0, 0.0, 0.0);

i = 0;
id = 0;

while (i < 4) {
id = int(jointID[i]);

if ((id >= 0) && (id < 32)) {
position +=

jointWeight[i] * (jointTransform[id] * gl_Vertex);

normalOut +=
jointWeight[i] * (jointTransform[id] * normalIn);

}

i++;
}

gl_Position = gl_ModelViewProjectionMatrix * position;
normal = normalize(gl_NormalMatrix * normalOut.xyz);

} else {
// no skinning -> use regular vertex position and normal
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
normal = normalize(gl_NormalMatrix * gl_Normal);

}

...
}

Figure 3: GLSL vertex shader code implementing
vertex blending algorithm

system: All joint transforms are kept in main memory and
vertex blending is done in the CPU before the transformed
(or blended) vertices are sent to the graphics card. The pre-
viously described approach is still preferred, but due to time
constraints, performance considerations had to be subordi-
nated to a flexible, working solution capable of rendering
complex scenes with a large number of joints.

In the future, the memory available to a vertex shader could
be extended by ’misusing’ texture memory to store a large
number of joint transforms that is interpreted as an array
of 4x4 matrices by the shader program. Thereby, the max-
imum number of joints will increase dramatically compared
to the initial approach while only minimal changes to the
implementation are necessary.

4.6 Asset acquisition
After receiving no reaction from online forum members on 11
second club [1] (see my post in 6.1), I tried contacting an an-
imator who has won several online animation competitions
and currently works for an animation studio in Singapore.
He was willing to help and provide me with material but
it turned out that he was not legally allowed to share the
original Maya scene files with me due to copyright restric-
tions on the character rigs he used. They were provided by
an animation school and can not be shared with anybody
outside the school.

Unfortunately, I was not able to find an animated character
sequence as elaborate as I had envisioned in order to evaluate
its virtue when presented within the application. Instead, I
incorporated a walking sequence that I had created as an un-
dergraduate student in 2005 using the Generi Rig [13]. This
sequence does not contain a voice track although the appli-
cation framework allows for import and playback of a voice
/ sound track along with scene playback. Evaluation of the
system using a motion sequence containing more expressive
animation will be necessary to judge its capabilities.

5. FUTURE WORK
Keyframe animated sequences produced for use in feature
films (or other media with the viewer maintaining a fixed
point of view) are staged and created with previous knowl-
edge about a spectator’s single point of view [5]. Many ani-
mation principles – which were developed while working in
traditional media types – are based on the assumption that
this knowledge can be exploited by the animator in order
to achieve desired effects on the viewer or to evoke certain
emotional responses. Exaggerations in a certain motion that
serve as aids in communicating information about the char-
acter’s state of mind might not have the same magnitude
or type of effect if the character is viewed from a different
angle.

If we let the user control the viewpoint freely, we must take
this major difference between VR and other media previ-
ously used for storytelling into account. Characters must
look good from all vantage points and the readability of be-
haviors has to be ensured regardless of viewing angle. To me,
this seems to be one of the major challenges to overcome in
the future in order to make VR a compelling medium for
storytelling.

6. APPENDIX
6.1 Online forum posting
=== Brief summary ===
I am looking for people willing to share Maya / COLLADA source
files containing short clips of character animation. Those will be
used within a Virtual Reality system to evaluate the questions
raised in my research project.
================

Hi everyone,

I am a graduate student in Computer Science and have been
fascinated by the art of character animation for many years (and
enjoy reading Richard Williams much more than any computer
literature... :-)).

Currently, I am working as a research assistant at a Virtual Re-
ality lab. As part of my thesis research, I would like to evalu-
ate the implications and benefits of bringing believable animation
(not ”programmer’s art”) into an immersive system (e.g. a CAVE
http://graphics.ethz.ch/Downloads/Publications/Papers/2004/
spie04/cave.jpg). To start out with, I would like to find out
whether presenting simple playblasts in a ”true” 3D environment
makes a difference in judging the quality of the animation and /
or identifying flaws. As we will use a head tracking system, the
user will be able to move around in the scene in order to change
his / her point of view. You can find more details about the
project here: http://www.jptiesel.de/Project_Outline.pdf

As I know there are a lot of gifted and skilled people out here on
this site, I hope to get some help from a few of you: In order to
present expressive and believable character animation, my own
attempts at this will not be sufficient. That is why I hope to
find somebody to provide me with Maya / COLLADA sequences
(preferably WIP files at different stages [blocking, breakdowns,
...]) that I can load and play in the VR system. Any work in
progress from a 11 Second Club contest would be particularly
helpful, as it is a good length for a quick review and contains a
voice track.

Of course, your work will be properly credited (at least in my
report, maybe I can even get a research paper out of this) and
not shared with anybody else without your consent. I also hope
to be able to put a video together in a few months showing the
system ’in action’ and share some of the results.

Please shoot me an email if you also think that this is an inter-
esting project and are willing to help me to get it going. I can
provide for FTP space to upload files.

Thanks for staying with me all the way to the end of this post,
keep up the great work!!!

Jan-Phillip Tiesel, jpt4246@gmail.com

7. REFERENCES
[1] 11 second club: Forum.

http://www.11secondclub.com/forum. Accessed 5/13/08.
[2] The freetype project: a free, high-quality and portable font

engine. http://www.freetype.org. Accessed 5/13/08.
[3] Openal: A free (lgpl-ed) and open source, cross platform

audio library used for 3d and 2d sound.
http://www.openal.org. Accessed 5/13/08.

[4] T. Akenine-Möller and E. Haines. Real-time Rendering.
A.K. Peters Ltd., 2nd edition, 2002.

[5] Marty Altman. Personal discussion. 4/7/08.

[6] M. Barnes. Collada: Digital asset schema release 1.4.1
specification.
http://www.khronos.org/files/collada_spec_1_4.pdf,
2006. Accessed 3/29/08.

[7] Dane Edward Bettis. Digital production pipelines:
examining structures and methods in the computer effects
industry. Master’s thesis, Texas A&M University, May 2005.
Available online at http://txspace.tamu.edu/bitstream/
1969.1/2406/1/etd-tamu-2005A-VIZA-Bettis.pdf.

[8] Ollie Johnston and Frank Thomas. The Illusion of Life.
Disney Animation. Abbeville Press, New York, 1st ed.
edition, 1981.

[9] John Lasseter. Principles of traditional animation applied
to 3d computer animation. In SIGGRAPH ’87: Proceedings
of the 14th annual conference on Computer graphics and
interactive techniques, pages 35–44, New York, NY, USA,
1987. ACM.

[10] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space
deformation: a unified approach to shape interpolation and
skeleton-driven deformation. In SIGGRAPH ’00:
Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 165–172, New
York, NY, USA, 2000. ACM Press/Addison-Wesley
Publishing Co.

[11] Maic Masuch, Knut Hartman, and Grit Schuster.
Emotional agents for interactive environments. In C5 ’06:
Proceedings of the Fourth International Conference on
Creating, Connecting and Collaborating through
Computing, pages 96–102, Washington, DC, USA, 2006.
IEEE Computer Society.

[12] Randy Pausch, Jon Snoddy, Robert Taylor, Scott Watson,
and Eric Haseltine. Disney’s aladdin: first steps toward
storytelling in virtual reality. In SIGGRAPH ’96:
Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 193–203, New
York, NY, USA, 1996. ACM.

[13] Andrew Silke. Generi rig. http:
//www.andrewsilke.com/generi_rig/generi_rig.html.
Accessed 3/29/08.

[14] Feeling Software. Feeling software: Fcollada.
http://www.feelingsoftware.com/content/view/62/76,
2008. Accessed 3/29/08.

[15] VR Juggler Development Team. The vr juggler suite.
http://www.vrjuggler.org. Accessed 5/13/08.

[16] Marco Vala, Pedro Sequeira, Ana Paiva, and Ruth Aylett.
Fearnot! demo: a virtual environment with synthetic
characters to help bullying. In AAMAS ’07: Proceedings of
the 6th international joint conference on Autonomous
agents and multiagent systems, pages 1–2, New York, NY,
USA, 2007. ACM.

[17] Richard Williams. The Animator’s Survival Kit: A Manual
of Methods, Principles, and Formulas for Classical,
Computer, Games, Stop Motion, and Internet Animators.
Faber & Faber, 2002.

[18] R. Woodland. Filling the gaps: Advanced animation using
stitching and skinning. Game Programming Gems, pages
476–483, 2000.

